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On the Computational Efficiency
of Catalyst Accelerated Coordinate

Descent

Dmitry Pasechnyuk(B) and Vladislav Matyukhin

Moscow Institute of Physics and Technology (National Research University),
Dolgoprudny, Russia

{pasechniuk.da,matyukhin}@phystech.edu

Abstract. This article is devoted to one particular case of using uni-
versal accelerated proximal envelopes to obtain computationally efficient
accelerated versions of methods used to solve various optimization prob-
lem setups. We propose a proximally accelerated coordinate descent
method that achieves the efficient algorithmic complexity of iteration
and allows taking advantage of the data sparseness. It was considered an
example of applying the proposed approach to optimizing a SoftMax-like
function, for which the described method allowing weaken the depen-
dence of the computational complexity on the dimension n in O(

√
n)

times and, in practice, demonstrates a faster convergence in comparison
with standard methods. As an example of applying the proposed app-
roach, it was shown a variant of obtaining on its basis some efficient
methods for optimizing Markov Decision Processes (MDP) in a minimax
formulation with a Nesterov smoothed target function.

Keywords: Proximal accelerated method · Catalyst · Accelerated
coordinate descent method · SoftMax · Markov decision processes

1 Introduction

One of the most important theoretical results in convex optimization was the
development of accelerated optimization methods [23]. At the initial stage of
implementation of this concept, many accelerated algorithms for different prob-
lem setups were proposed. But each such case required special consideration of
the possibility of acceleration. Therefore, the proposed designs were significantly
different and did not allowing assume a way to generalize them. A significant
step towards the development of a universal scheme for accelerating optimization
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methods was the paper in which an algorithm called Catalyst proposed, based on
the idea of [26,27] and allowing to accelerate other optimization methods, using
them for the sequential solving of several Moreau–Yosida regularized auxiliary
problems [18,19]. Following these ideas, many variants of the applications of this
method and its modifications [14,17,25] were proposed. Among the most recent
results until the time of writing this paper, the generalizations of the discussed
approach to tensor methods [5,10,11,20] were also described. The corresponding
form of the accelerated proximal envelope to the authors’ knowledge is the most
general of those described in the literature, and therefore, this paper is focused
primarily on the methods proposed in the papers [10,11].

main motivation of this paper is to describe the possibilities of the prac-
tical application of universal accelerated proximal envelopes for constructing
computationally and oracle efficient optimization methods. Let us consider the
classical coordinate descent method [4], the iteration of which for the convex
function f : Rn → R is of the form:

xi
k+1 = xi

k − η∇if(xk), i ∼ U{1, ..., n}, η > 0.

One of the many applications of this method is the optimization of functions,
for which the calculation of the one component of the gradient is significantly
more efficient than the calculation of the full gradient vector (in particular,
many problems in the case of sparse formulations satisfy this condition). The
oracle complexity of this method, provided that the method stops when the ε-
small function value residual is reached, is O

(
nLR2

ε

)
, where R2 = ‖x0 − x∗‖22,

L = 1
n

∑n
i=1 Li is the average of the Lipschitz constants of the gradient compo-

nents. However, this estimate is not optimal for the class of convex problems.
Let us now consider the accelerated coordinate descent method proposed by
Yu.E. Nesterov [24]. The oracle complexity of this method corresponds to the

optimal bound: O
(

n

√
˜LR2

ε

)
, where

√
L̃ = 1

n

∑n
i=1

√
Li is the mean of square

roots of the Lipschitz constants of the gradient components. At the same time,
the situation changes drastically when the algorithmic complexity of the method
considered. Namely, even if the computation of one component of the gradient
has the complexity O(s), s � n, the complexity of the whole iteration of the
accelerated coordinate descent method will be O(n), unlike the standard method,
the iteration complexity of which is O(s). It means that the sparseness of the
problem when using the accelerated coordinate descent method does not sig-
nificantly affect the complexity of the algorithm, and besides, the complexity
in this case quadratically depends on the dimension of the problem. Together,
this somewhat devalues the use of the coordinate descent method in this case.
Thus, an interesting problem is the construction of an accelerated coordinate
descent method, the iteration complexity of which, as in the standard version
of the method, is O(s). This is possible due to the application of the universal
accelerated proximal envelope “Accelerated Meta-algorithm” [11].

This article consists of an introduction, conclusion and the main Sect. 2. It
describes the theoretical results on the convergence and algorithmic complexity
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of the coordinate descent method, accelerated by using the “Accelerated Meta-
algorithm” envelope (Sect. 2.1). Using the example of the SoftMax-like function
optimization problem, it was experimentally tested method’s effectiveness with
relation to its working time. There were also described the possibilities of its
computationally efficient implementation, and carried out a comparison with
standard methods (Sect. 2.2). Further, as an example of applying the proposed
approach, it was provided a method for optimizing Markov Decision Processes
in a minimax formulation, based on applying the method introduced in this
paper to the Nesterov smoothed target function. The proposed approach obtains
estimates close to that for several efficient and practical methods for optimizing
the discounted MDP and matches the best estimates for the averaged MDP
problem (Sect. 2.3).

2 Accelerated Meta-algorithm and Coordinate Descent

2.1 Theoretical Guarantees

Let us consider the following optimization problem of the function f : Rn → R:

min
x∈Rn

f(x),

subject to:

1. f is differentiable on R
n;

2. f is convex on R
n;

3. ∇if is component-wise Lipschitz continuous, i.e. ∀x ∈ R
n and u ∈ R,

∃ Li ∈ R (i = 1, . . . , n), such that

|∇if (x + uei) − ∇if(x)| ≤ Li|u|,

where ei is the i-th unit basis vector, i ∈ {1, ..., n};
4. ∇f is L-Lipschitz continuous.

Let us turn to the content of the paper [11], where a general version of
the “Accelerated Meta-algorithm” for solving convex optimization problems for
composite functionals in form of F (x) = f(x) + g(x) was proposed. For the
considered formulation of the problem, such generality is not required. It is
sufficient to apply a special case of the described scheme for p = 1, f ≡ 0 (using
the designations of the corresponding paper), in which the described envelope
takes the form of an accelerated proximal gradient method. The method used is
listed as Algorithm 1.

Before formulating any results on the convergence of the proposed acceler-
ated coordinate descent method described below, it is necessary to start with a
detailed consideration of the process of solving the auxiliary problems, where its
analytical solution is available only in rare cases. Therefore, one should apply
numerical methods to find its approximate solution, and that is inaccurate. The
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Algorithm 1: Accelerated Meta-algorithm for First-order Method M
Input: H > 0, x0 ∈ R

n;

λ ← 1/2H;
A0 ← 0; v0 ← x0;

for k = 0, ..., ˜N − 1 do

ak+1 ← λ +
√

λ2 + 4λAk

2
;

Ak+1 ← Ak + ak+1;

x̃k ← Akvk + ak+1xk

Ak+1
;

By running the method M,
find the solution of the following auxiliary problem
with an accuracy ε by the argument:

vk+1 ∈ Argε min
y∈Rn

{

f(y) +
H

2
‖y − x̃k‖2

2

}

;

xk+1 ← xk − ak+1∇f(vk+1);

end
return v

˜N ;

process of solving the auxiliary problem should continue until the following stop-
ping condition is satisfied ([16], Appendix B):

∥∥∥∥∇
{

F (y�) := f(y�) +
H

2
‖y� − x̃k‖22

}∥∥∥∥
2

≤ H

2
‖y� − x̃k‖2, (1)

where y� is an approximate solution of the auxiliary problem, returned by inter-
nal method M. Due to the ‖∇F (y∗)‖2 = 0 (where y∗ denotes an exact solution
of the considered problem), and due to the (L + H)-Lipschitz continuity of ∇F ,
we have got:

‖∇F (y�)‖2 ≤ (L + H)‖y� − y∗‖2. (2)

Writing out the triangle inequality: ‖x̃k − y∗‖2 − ‖y� − y∗‖2 ≤ ‖y� − x̃k‖2, and
using it together the inequalities (1) and (2), we have got the final form of the
stopping condition:

‖y� − y∗‖2 ≤ H

3H + 2L
‖x̃k − y∗‖2. (3)

This implies that the required argument accuracy of solving the auxiliary
problem does not depend on the accuracy required for the main problem solution.
That makes it possible to significantly simplify the inference of further results.

Let us now consider the main method used for solving auxiliary problems.
Coordinate Descent Method in version of [22] (in the particular case, when γ = 1)
is listed as Algorithm 2. For this method, in the case of the considered auxiliary
problems, the following result holds:
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Algorithm 2: Coordinate descent method
Input: y0 ∈ R

n;

Z ← ∑n
i=1(H + Li);

pi ← (H + Li)/Z, i ∈ {1, ..., n};
Discrete probability distribution π
with probabilities pi;

for k = 0, ..., N − 1 do
i ∼ π{1, ..., n};
yk+1 ← yk;

yi
k+1 = yi

k − 1

H + Li
∇iF (yk);

end
return yN ;

Theorem 1 ([4], theorem 6.8). Let F be H-strongly convex function with respect
to ‖ · ‖2. Then for the sequence {yk}N

k=1 generated by the described coordinate
descent algorithm 2, it holds the following inequality:

E[F (yN )] − F (y∗) ≤
(

1 − 1
κ

)N

(F (y0) − F (y∗)), (4)

where κ =
H

Z
, Z =

n∑
i=1

(H + Li), (5)

where E[·] denotes the mathematical expectation of the specified random variable
with respect to the randomness of methods trajectory induced by a random choice
of components i at each iteration.

Using this result, lets formulate the following statement on the number of itera-
tions of the coordinate descent method sufficient to satisfy the stopping condition
(3).

Corollary 1. The expectation E[yN ] of the point resulting from the coordinate
descent method (Algorithm 2) satisfies the condition (3) if the following inequal-
ity on iterations number holds:

N ≥ N(ε̃) =

⌈
Z

H
ln

{(
1 +

L

H

)(
3 +

2L

H

)2
}⌉

, (6)

where ε̃ =
H

2

(
H

3H + 2L

)2

‖y0 − y∗‖22. (7)

Proof. Is in Appendix A1.
1 For the detailed proofs see appendices in full paper version on https://arxiv.org/

abs/2103.06688.

https://arxiv.org/abs/2103.06688
https://arxiv.org/abs/2103.06688
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Now that the question of the required accuracy and oracle complexity of
solving the auxiliary problem using the proposed coordinate descent method is
clarified, we can proceed to the results on the convergence of the Accelerated
Meta-algorithm. For the used stopping condition (3), the following result on the
convergence of the Accelerated Meta-algorithm holds.

Theorem 2 ([11], theorem 1). For H > 0 and the sequence {vk} ˜N
k=1 generated

by the Accelerated Meta-algorithm with some non-stochastic internal method, it
holds the following inequality:

f(v
˜N ) − f(x∗) ≤ 48

5
H‖x0 − x∗‖22

Ñ2
. (8)

Based on the last statement, one can formulate a theorem on the convergence of
the Accelerated Meta-algorithm in the case of using the stochastic method and,
in particular, coordinate gradient descent method.

Theorem 3. For H > 0 and some 0 < δ < 1, the point v
˜N resulting from the

Accelerated Meta-algorithm using coordinate descent method to solve the auxil-
iary problem, solving it within Nδ iterations, satisfies the condition

Pr(f(v
˜N ) − f(x∗) < ε) ≥ 1 − δ,

where Pr(·) denotes the probability of the specified event, if

Ñ ≥
⌈

4
√

15
5

√
H‖x0 − x∗‖22

ε

⌉
, (9)

Nδ ≥ N

(
ε̃δ

Ñ

)
=

⌈
Z

H
ln

{
Ñ

δ

(
1 +

L

H

)(
3 +

2L

H

)2
}⌉

. (10)

Proof. The Corollary 1 presents an estimate of the number of iterations sufficient
to satisfy the following condition for the expected value of the function at the
resulting point of the method:

E[F (yN(ε̃))] − F (y∗) ≤ ε̃.

Lets use the Markov inequality and obtain the formulation of this condition in
terms of the bound for the probability of large deviations [1]: deliberately choose
the admissible value of the probability of non-fulfilment of the stated condition,
so that 0 < δ/Ñ < 1, where Ñ expressed from (8); then

Pr
(
F
(
yN(ε̃δ/ ˜N)

)
− F (y∗) ≥ ε̃

)
≤ δ

Ñ
·
E

[
F
(
yN(ε̃δ/ ˜N)

)]
− F (y∗)

ε̃ · δ/Ñ
=

δ

Ñ
.

Since the probability that the obtained solution of some separately taken aux-
iliary problem will not satisfy the stated condition is equal to δ/Ñ . It means
that the probability that for Ñ iterations of the Accelerated Meta-algorithm the
condition will not be satisfied for at least one of the problems is Ñ · δ/Ñ = δ,
whence the proved statement follows.
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Further, combining the estimates given in Theorem 3, we can obtain an
asymptotic estimate for the total number of iterations of the coordinate descent
method, sufficient to obtain a solution of the considered optimization problem
with a certain specified accuracy, as well as an estimate for the optimal H value:

Corollary 2. In order to the point v
˜N , which is the result of the Accelerated

Meta-algorithm, to satisfy the condition

Pr(f(v
˜N ) − f(x∗) < ε) ≥ 1 − δ,

it is sufficient to perform a total of

N̂ ≥ Ñ · Nδ = O
(

Z‖x0 − x∗‖2√
H

· 1
ε1/2

log
{

1
ε1/2δ

})
(11)

iterations of coordinate descent method to solve the auxiliary problem. In this
case, the optimal value of the regularization parameter H of the auxiliary problem
should be chosen as H � 1

n

∑n
i=1 Li (� denotes equality up to a small factor of

the log order).

Proof. The expression for N̂ can be obtained by the direct substitution of one
of the estimates given in (9) into another, and their subsequent multiplication.
If we exclude from consideration a small factor of order log(L/H), the constant
in the estimate will depend on H as:

√
H · Z/n

H
=

√
H

(
1 +

1
n

∑n
i=1 Li

H

)
.

By minimizing the presented expression by H, we get the specified result.

A similar statement can be formulated for the expectation of the total itera-
tions number without resorting to bound for the probabilities of large deviations,
following the reasoning scheme proposed in [9]:

Theorem 4. The expectation E[N̂ ] of the sufficient total number of the itera-
tions of the coordinate descent method, to obtain a point v

˜N satisfying the fol-
lowing condition:

f(v
˜N ) − f(x∗) < ε

can be bounded as follows:

E[N̂ ] ≤ Ñ · (N(ε̃)+1) = O
⎛
⎝
√

L‖x0 − x∗‖22
ε

⎞
⎠ , where L = Z/n =

1
n

n∑
i=1

Li.

Proof. Is in Appendix B.

As we can see, the proposed scheme of reasoning allows us to reduce the log-
arithmic factor in estimate for the number of iterations of the method. However,
this result is less constructive than the presented one in Corollary 2. Indeed, in
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the above reasoning, we operated with the number of iterations N , after which
the stopping condition for the internal method is satisfied. But in the program
implementation, stopping immediately after fulfilment of this condition is not
possible, if only because it is impossible to verify this criterion due to the natural
lack of information about y∗. So the last result is more relevant from the point
of view of evaluating the theoretical effectiveness of the method, while when
considering specific practical cases, one should rely on the estimate (11).

Let us now consider in more detail the issue of the algorithmic complexity of
the proposed accelerated coordinate descent method.

Theorem 5. Let the complexity of computing one component of the gradient of
f is O(s). Then the algorithmic complexity of the Accelerated Meta-algorithm
with coordinate descent as internal method is

T = O
⎛
⎝s · n ·

√
L‖x0 − x∗‖22

ε
log
{

1
ε1/2δ

}⎞
⎠ .

Proof. Is in Appendix C.

Note also that the memory complexity of the method is O(n), as well as the
complexity of the preliminary calculations (for the coordinate descent method,
there is no need to perform them again for every iteration).

Let us compare the estimates obtained for proposed approach (Catalyst
CDM) with estimates for other methods that can be used to solve problems
in the described setting: Fast Gradient Method (FGM), classical Coordinate
Descent Method (CDM) and Accelerated Coordinate Descent Method in the
version of Yu.E. Nesterov (ACDM). The estimates are shown in Table 1 below.
As can be seen from the above asymptotic estimates of the computational com-
plexity, the proposed method allows to achieve a convergence rate that is not
inferior to other methods with respect to the dependence on the dimension n and
the required accuracy ε (for a certain price, in the form of additional logarith-
mic factor). Note, in addition, that despite the significant similarity of estimates,
between the two most efficient methods in the table (FGM and Catalyst CDM)
there is also a difference in the constants characterising the smoothness of the
function. Namely, L in FGM and L in Catalyst CDM. Thus the behaviour of
the considered method for various problems directly depends on the character
of its component-wise smoothness.

2.2 Numerical Experiments

This section describes the character of the practical behaviour of the proposed
method by the example of the following SoftMax-like function optimization prob-
lem:

min
x∈Rn

{f(x) = γ ln

⎛
⎝

m∑
j=1

exp
( [Ax]j

γ

)⎞
⎠− 〈b, x〉}, (12)
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Table 1. Comparison of the effectiveness of methods

Algorithm Iteration complexity Comp. complexity Source

FGM O (s · n) O
(

s · n · 1

ε1/2

)

[23]

CDM O (s) O
(

s · n · 1

ε

)

[4]

ACDM O (n) O
(

n2 · 1

ε1/2

)

[24]

Catalyst CDM O (s) ˜O
(

s · n · 1

ε1/2

)

This paper

where b ∈ R
n, A ∈ R

m×n, γ ∈ R+. Similar problems are essential for many
applications. In particular, they arise in entropy-linear programming problems
as a dual problem [8,12], in particular in optimal transport problem, is also a
smoothed approximation of the max function (which gave the function the name
SoftMax) and, accordingly, of the norm ‖ · ‖∞, which may be needed in some
formulations of the PageRank problem or for solving systems of linear equations.
Moreover, in all the described problems, an important special case is the sparse
setting, in which the matrix A is sparse, that is, the average number of nonzero
entries in the row Aj does not exceed some s � n (it will also be convenient to
assume that the one of the rows Aj is non-sparse).

Let us formulate the properties possessed by the function f [13]:

1. f is differentiable;
2. ∇f satisfies the Lipschitz condition with the constant L = maxj=1,...,m ‖Aj‖22;
3. ∇if satisfy the component-wise Lipschitz condition with the constants Li =

maxj=1,...,m |Aji|.
Let us write the expression for the i-th component of the gradient of the

function f :

∇if(x) =

∑m
j=1 Aji exp

(
[Ax]j

)

∑m
j=1 exp

(
[Ax]j

) .

As we can see, the naive calculation of this expression can take time comparable
to the calculation of the whole gradient and it will significantly affect the com-
putational complexity and the working time of the method. At the same time,
many terms in this expression can be recalculated either infrequently or in a
component-wise manner, and used as additional sequences when performing a
step of method. Using this approach, the complexity of the iteration will remain
efficient, and the use of the coordinate descent methods will be justified. For the
convenience of describing the computational methods used, we write the step of
the coordinate descent algorithm in the form of

yk+1 = yk + ηei,
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where η is the step size, multiplied by the corresponding gradient component, ei

is the i-th unit basis vector.
So, let us describe the additionally introduced computational procedures:

1. We will store a sequence of values
{

exp
(
[Ayk]j

)}m

j=1
, used to calculate the

sum in the numerator. Updating these values after executing a method step
takes O(s) algorithmic complexity, due to the Ayk+1 = Ayk+ηAi and that Ai

has at most s nonzero components, which means that it will be necessary to
calculate not more than s correcting factors and multiply the corresponding
values from the sequence by them.

2. From the first point, it can be understood that the multiplication of sparse
vectors should be performed in O(s), considering only nonzero components.
In terms of program implementation, this means the need to use a sparse
representation for cached values and for rows of the matrix A, that is, storing
only index-value pairs for all nonzero elements. Then, obviously, the com-
plexity of arithmetic operations for such vectors will be proportional to the
complexity of a loop with elementary arithmetic operations, the number of
iterations of which is equal to the number of nonzero elements (in the python
programming language, for example, this storage format is implemented in
the method scipy.sparse.csr matrix [28]).

3. Similarly, we will store the value
∑m

j=1 exp
(
[Ayk]j

)
, which is the denomi-

nator of the presented expression. Its updating is carried out with the same
complexity as updating a sequence (by calculating the sum of nonzero terms
added to each value from the sequence).

4. Since evaluating the specified expression requires evaluating exponent values,
the type overflow errors can occur. To solve this problem, it will be used
the standard technique of exp-normalize trick [3]. However, to use it, one
should also store the value maxj=1,...,m [Ayk]j . At the same time, there is no
need to maintain exactly this value. Indeed, it is sufficient to use only an
approximation of it to keep the exponent values small, so this value can be
recalculated much rarely: for example, once in m iterations (in this case, the
amortized complexity will also be equal to O(s)).

So, in the further reasoning, one can assume that the iteration of the coor-
dinate descent algorithm for solving the corresponding auxiliary problem has
amortized complexity O(s).

Further, let us consider in more detail the question of the values of the
smoothness constants of this function. We can write down asymptotic formulas
for L and L = 1

n

∑n
i=1 Li:

L = max
j=1,...,m

‖Aj‖22 = O(n), L =
1
n

n∑
i=1

max
j=1,...,m

|Aji| = O(1).
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Using these estimates, let us refine the computational complexity of the FGM
and Catalyst CDM (CCDM) methods as applied to this problem:

TFGM = O
(

s · n3/2 · 1
ε1/2

)
, TCCDM = Õ

(
s · n · 1

ε1/2

)
.

Thus, in theory, the application of the Catalyst CDM method for solving this
problem allows, in comparison with FGM, to reduce the factor of order O(

√
n)

in the asymptotic estimate of the computational complexity. In practice, this
means that it is very reasonable to apply the proposed method to problems of
large dimensions.

Let us now compare the performance of the proposed approach (Catalyst
CDM) with a number of alternative approaches: Gradient Method (GM), Fast
Gradient Method (FGM), Coordinate Descent Method (CDM) and Accelerated
Coordinate Descent Method (ACDM), by the example of the problem (12) with
an artificially generated matrix A in two different ways. Figures 1 and 2 present
plots of the convergence of the methods under consideration: the x-axis shows the
working time of the methods in seconds, and the y-axis shows the function value
residual in a logarithmic scale (f∗ calculated by searching for the corresponding
point x∗ using the FGM method, tuned for an accuracy that is obviously much
higher than that possible to achieve at the selected time interval).

lo
g 

sc
al

e

s

Fig. 1. Convergence of methods for the
SoftMax problem (12) with a uniformly
sparse random matrix.

lo
g 

sc
al

e

s

Fig. 2. Convergence of methods for the
SoftMax problem (12) with heteroge-
neously sparse matrix.

In Fig. 1, the case is presented for which all elements of the matrix A are
i.i.d. random variables from the discrete uniform distribution Aji ∈ U{0, 1}, the
number of nonzero elements is s ≈ 0.2m, and the parameter γ = 0.6 (as well
as in the second case). In this setting, the proposed method demonstrates faster
convergence compared to all methods under consideration, except the FGM. At
the same time, in the setting shown in Fig. 2, in which the number of nonzero
elements, in comparison with the first case, is increased to s ≈ 0.75m, and the
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matrix is generated heterogeneously in accordance with the rule: 0.9m rows with
0.1n nonzero elements and 0.1m rows with 0.9n nonzero elements, and also one
row of the matrix is completely nonsparse, the proposed method (Accelerated
Meta-algorithm with coordinate descent as internal method) converges faster
than FGM. This is explained by the fact that in this case L = n, but L is
still quite small and, as a result, the constant in the proposed method has a
noticeably smaller effect on the computational complexity than in the case of
FGM. From the results of the experiment, it can also be noted that the character
of its componentwise smoothness affects the efficiency of the proposed method
much more significantly than the sparseness of the problem.

2.3 Application to Optimization of Markov Decision Processes

We denote an MDP instance by a tuple MDP := (S,A,P, r, γ) with components
defined as follows:

1. S is a finite set of states, |S| = n;
2. A =

⋃
i∈S Ai is a finite set of actions that is a collection of sets of actions Ai

for states i ∈ S, |A| = m;
3. P is the collection of state-to-state transition probabilities where P :=

{pij(ai)|i, j ∈ S, ai ∈ Ai};
4. r is the vector of state-action transitional rewards where r ∈ [0, 1]A, ri,ai

is
the instant reward received when taking action ai at state i ∈ S;

5. γ is the discount factor of MDP, by which one down-weights the reward in
the next future step. When γ ∈ (0, 1), we call the instance a discounted MDP
(DMDP) and when γ = 1, we call the instance an average-reward MDP
(AMDP).

Let as denote by P ∈ R
A×S the state-transition matrix where its (i, ai)-th

row corresponds to the transition probability from state i ∈ S where ai ∈ Ai to
state j. Correspondingly we use Î as the matrix with ai-th row corresponding
to ei, for all i ∈ S, ai ∈ Ai. Our goal is to compute a random policy which
determines which actions to take at each state. A random policy is a collection
of probability distributions π := {πi}i∈S , where πi ∈ Δ|Ai|, πi(aj) denotes the
probability of taking aj ∈ Ai at state i. One can extend πi to the set of Δm by
filling in zeros on entries corresponding to other states j �= i. Given an MDP
instance MDP = (S,A,P, r, γ) and an initial distribution over states q ∈ Δn ,
we are interested in finding the optimal π� among all policies π that maximizes
the following cumulative reward vπ of the MDP:

π� := arg max
π

vπ,

vπ :=

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

E
π

[ ∞∑
t=1

γt−1rit,at

∣∣i1 ∼ q

]
in the case of DMDP,

lim
T→∞

1
T
E

π

[
T∑

t=1

rit,at

∣∣i1 ∼ q

]
in the case of AMDP.
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For AMDP, v� is the optimal average reward if and only if there exists a
vector v� = (v�

i )i∈S satisfying its corresponding Bellman equation [2]:

v� + v�
i = max

ai∈Ai

⎧
⎨
⎩
∑
j∈S

pij(ai)v�
j + ri,ai

⎫
⎬
⎭ ,∀i ∈ S.

For DMDP, one can show that at optimal policy π�, each state i ∈ S can be
assigned an optimal cost-to-go value v�

i satisfying the following Bellman equa-
tion:

v�
i = max

ai∈Ai

⎧
⎨
⎩
∑
j∈S

γpij(ai)v�
j + ri,ai

⎫
⎬
⎭ ,∀i ∈ S.

One can further write the above Bellman equations equivalently as the following
primal linear programming problems.

min
v,v

v s.t. v1 + (Î − P )v − r ≥ 0 (LP AMDP)

min
v

(1 − γ)q�v s.t. (Î − γP )v + r ≥ 0 (LP DMDP)

By standard linear duality, we can recast the problem formulation using the
method of Lagrangian multipliers, as bi-linear saddle-point (minimax) problem.
The equivalent minimax formulations are

min
v∈Rn

{
F (v) = max

μ∈Δm

(
μ�((P − Î)v + r)

)}
(AMDP)

min
v∈Rn

{
Fγ(v) = max

μ∈Δm

(
(1 − γ)q�v + μ�((γP − Î)v + r)

)}
(DMDP)

Then, one can apply the Nesterov smoothing technique to the presented
max-type function, according to [21]. (The calculation is presented for the case
of DMDP, as a more general one. A smoothed version of the AMDP function is
obtained similarly with the re-designations A := P − Î and γ = 1):

Fγ(v) = max
μ∈Δm

⎛
⎝(1 − γ)q�

︸ ︷︷ ︸
b

v + μ�((γP − Î)︸ ︷︷ ︸
A

v + r)

⎞
⎠ = max

μ∈Δm

⎛
⎝

m∑
j=1

μj([Av]j + rj)

⎞
⎠ + 〈b, v〉

→ max
μ∈Δm

⎛
⎝

m∑
j=1

μj([Av]j + rj) − σ

m∑
j=1

μj ln

(
μj

1/m

)⎞
⎠ + 〈b, v〉

= σ ln

⎛
⎝

m∑
j=1

exp

(
[Av]j + rj

σ

)⎞
⎠ − σ lnm − 〈b, v〉 =: fγ(v), where σ := ε/(2 lnm).

The resulting problem is of the form of SoftMax function, discussed in detail
in the previous section. Taking into account the form of the matrix A, we can
calculate the average component-wise Lipschitz constant:

Pji ∈ [0, 1], Îji ∈ {0, 1} =⇒ L =
1
σ

1
n

n∑
i=1

max
j=1,...,m

|Aji| ≤ γ

σ
=

2γ ln m

ε
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So, one can get the following estimates, which are also given in the Tables 2
and 3 (transition from the duality gap accuracy ε in matrix game setting to the
ε̃ accuracy to obtain the ε̃-approximate optimal policy satisfying the condition
in expectation Evπ ≥ v� − ε̃ is carried out according to the rules described in
more detail in the paper [15]):

ε ∼ 1
2

· ε̃

3
=⇒ TCCDM = Õ

(
nnz(P )

√
log m · ε̃−1

)
,

εγ ∼ 1
2

· (1 − γ)ε̃
3

=⇒ TCCDM,γ = Õ
(
γ1/2(1 − γ)−1 · nnz(P )

√
log m · ε̃−1

)
,

where nnz(P ) ≤ n · m denotes the number of nonzero elements in matrix P .
In addition to the result corresponding to the considered method, the Tables 2
and 3 contain complexity bounds of other known approaches to solve matrix
games and MDP problems (for the sake of compactness, it is used the notation
nnz′(P ) = nnz(P )+(m+n) log3(mn)). It can be seen that for the case of γ = 1,
the described approach allowing to obtain one of the best among the known
estimates, and in the case of γ < 1 it is close in efficiency to many modern
approaches. Moreover, to describe the method used in this article, it was enough
to apply only a special case of the universal accelerated proximal envelope for the
classical coordinate descent method. This approach is conceptually much simpler
than the other methods cited here (which, by the way, are often applicable only
to very particular settings), and allows one to obtain complexity bounds for
AMDP problem that notedly competitive with the best alternatives.

Table 2. Comparison of the effectiveness of approaches (γ = 1 case)

Computational complexity Source

˜O
(

nnz(P )
√

log m · ε̃−1
)

This paper

˜O
(

nnz(P )
√

m/n · ε̃−1
)

[6]

˜O
(

log3(mn)
√

nnz(P ) · nnz′(P ) · ε̃−1
)

[7]

Table 3. Comparison of the effectiveness of approaches (γ ∈ (0, 1) case)

Computational complexity Source

˜O
(

γ1/2(1 − γ)−1 nnz(P )
√

log m · ε̃−1
)

This paper

˜O
(

γ(1 − γ)−1 nnz(P )
√

m/n · ε̃−1
)

[6]

˜O
(

γ(1 − γ)−1 log3(mn)
√

nnz(P ) · nnz′(P ) · ε̃−1
)

[7]

˜O (

nm
(

n + (1 − γ)−3) · log
(

ε̃−1)) [29]
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3 Conclusion

In this paper, we propose a version of the Coordinate Descent Method, acceler-
ated using the universal proximal envelope “Accelerated Meta-algorithm”. The
performed theoretical analysis allows us to assert that the dependence of its
computational complexity on the dimensionality and required solution accuracy
is not inferior to other methods used to optimize convex Lipschitz smooth func-
tions. Moreover, its computational complexity is comparable to that of the Fast
Gradient Method. At the same time, the proposed scheme retains the properties
of the classical Coordinate Descent Method, including the possibility of using the
properties of component-wise smoothness of the function. The given numerical
experiments confirm the practical efficiency of the method, and also emphasize
the particular relevance of the proposed approach for the SoftMax-like function
optimization problem that often arises in various applications. As an example of
such an application, it was considered the problem of optimizing the MDP, and
using the described approach, a method was proposed for solving the averaged
version of the MDP problem, which gives a complexity bound that competes
with the most efficient known ones.
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