
Interior Point Methods for
Nearly Linear Time Algorithms

Aaron Sidford
Contact Info:
• email: sidford@stanford.edu
• website: www.aaronsidford.com

Stanford University
Departments of Management Science
& Engineering and Computer Science

Thank You Prof. Yurii Nesterov!

Laplacian System Solving
• Coordinate Descent

Undirected Maximum Flow
• Nesterov’s presentation of first-

order methods

Linear Programming
• Self-concordance
• Univeral barrier

Acceleration
• Non-convex optimization
• Ball-constrained optimization oracle
• Max-type functions

Dual Extrapolation
• Optimal transport
• Acceleration

Solving Tall Dense Linear Programs
in Nearly Linear Time

joint work with Jan van den Brand, Yin Tat Lee, Zhao Song

Bipartite Matching in Nearly-linear Time
on Moderately Dense Graphs

joint work with Jan van den Brand, Yin Tat Lee, Danupon Nanongkai,
Richard Peng, Thatchaphol Saranurak, Zhao Song, and Di Wang

Minimum Cost Flows, MDPs, and ℓ𝟏-Regression
in Nearly Linear Time for Dense Instances

joint work with Jan van den Brand, Yin Tat Lee, Yang P. Liu,
Thatchaphol Saranurak, Aaron Sidford, Zhao Song, Di Wang

This Talk

Part 1: Overview
• Survey recent history of interior point methods for linear programming
• Present and motivate recent nearly linear time algorithms

Part 2: IPM
• Brief intro to recent IPM advances and our new IPMs

Part 3: Data Structures
• Data structures for efficiently implementing our IPMs
• Highlight difficulty and key techniques

Note: will hide many details throughout the talk and
simplify many parts. Happy to discuss details after.

Linear Programming

Dual
max

!: 𝑨!$%
𝑏&𝑦

Primal
min

'$(: 𝑨!')*
𝑐&𝑥

The Picture max
! ∶ 𝑨!$%

𝑏&𝑦

− 𝑎' −
− 𝑎(−

⋮
− 𝑎) −

⋮
− 𝑎* −

𝑦 ≥

𝑏'
𝑏(
⋮
𝑏)
⋮
𝑏*

𝑨𝒚 ≥ 𝑐

𝑏"𝑦

Solution : 𝑦∗

• Variables : 𝑦 ∈ ℝ!

• Cost vector : 𝑏 ∈ ℝ!

• Constraint matrix : 𝐀 ∈ ℝ"×!

• Constraint vector : c ∈ ℝ"

Standard Methods
• Simplex

• Fast in practice
• Slow in theory

• Ellipsoid

• Moderate in practice
• Moderate in theory

• Interior Point

• Often fastest in theory
• Often fast in practice

Goal
high precision

solutions in poly time
max

! ∶ 𝑨!$%
𝑏&𝑦

Ignoring first order methods with polynomial
dependence on condition number or accuracy

Why Study Interior Point Methods (IPM)?
In General?

• General robust optimization framework

• Solves to high precision (i.e. linearly convergent)

• Deals with difficult problems (i.e. ill-conditioning)

• Can outperform theory (practice ≥ worst case)

As a Theorist?

• Tool for finding and exploiting problem structure and obtaining
faster high-precision methods.

• Combinatorial optimization:
• Fastest known algorithms in many problem settings
• Minimum cost flow: [DS08,LS14]
• Maximum flow: [M13,M16,LS20,KLS20,BLLSSSSW21,GLP21]
• Shortest path negative edge lengths: [CMSV17, AMV20]

• Continuous optimization:
• Fastest known algorithms in many problem settings
• ℓ$-Regression [LS15, CLS19, B20, JSWZ20, BLLSSSSW21]
• Geometric median [CLMPS16]
• Markov decision process [LS15 / SWWYY18, BLLSSSSW21]
• Empirical risk minimization [LSZ19]

Many open problems and
active research area

Interior Point Methods (IPM)

One Difficult
Optimization Problem

Sequence of Simpler
Optimization Problems

How many
problems?

How hard are the
problems?

Interior Point
Framework

Year Author(s) Iteration Count 4𝐎(⋅) Iteration Cost

1984 Karmarkar 𝑛 Solve 1 linear system

1986 Renegar 𝑛 Solve 1 linear system

1989 Vaidya 𝑑 Solve 𝑑 linear systems

1989 Vaidya 𝑛𝑑 $/& Solve n linear systems

1994 Nesterov & Nemirovskii 𝑑 Volume of polar polytope

Previous Work
𝐴 ∈ ℝ"×!

𝑛 ≥ 𝑑

Project onto
image of

rescaled 𝑨

Compute
projection

matrix
(or its diagonal)

Harder than linear
programming

Lee & Sidford 14 / 19
An !𝑂 𝑑 iteration algorithm that solves

!𝑂(1) linear systems per iteration.

“Universal Barrier”
Applies to all convex

optimization

min
'∈ℝ!

𝑫𝑨𝑦 − 𝑒 *
*

diag(𝑫𝑨 𝑨+𝑫*𝑨 ,$𝑨-𝑫)

𝑨+𝑫*𝑨 ,$𝑓𝑓𝑜𝑟 𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙 𝑫 compute 𝑜𝑟

Dual
max

!: 𝑨!$%
𝑏&𝑦

Primal
min

'$(: 𝑨.')*
𝑐&𝑥

up to the last ~5 years

How do we improve further?

One Difficult
Optimization Problem

Sequence of Simpler
Optimization Problems

How many
problems?

How hard are the
problems?

progress over the last ~5 years

Interior Point
Framework

Solve Dynamic Data
Structure Problems

Key Take Aways
• Improved IPMs ⇒ “easier” data structure problems
• Improved data structure ⇒ “near optimal” algorithms

No general improvement to
previous slide in past 5 years.

Running Times

[LS14,LS15,LS19]
!𝑂(nnz 𝑨 + 𝑑+ 𝑑)

[CLS19,B19]
!𝑂(𝑛,)

Previous best known running
time for large (poly-bounded) 𝑛.

• Long history of runtime improvements by improving linear system
[K84,NN89,V89,LS14,LS15,CLS19,B19]

previous state-of-the art

• [LS14 / LS19] IPM , M𝑂(𝑑) iteration of system solving
• [LS 15] “inverse maintenance” data structures

• “robust” primal dual variant of [R84], M𝑂(𝑛) iteration
• Precise projection matrix maintenance and approximate

iterate maintenance

𝑤 < 2.373 is current matrix multiplication constant [W13]

Matches best known running time for finding 𝑥 with 𝑨+𝑥 = 𝑏
when 𝑛 ≈ 𝑑 and no sparsity assumptions. [PV20]

Question
Can we improve further?

Question
Can we solve large instances optimally?

Running Times

[LS14,LS15,LS19]
!𝑂(nnz 𝑨 + 𝑑+ 𝑑)

[CLS19,B19*]
!𝑂(𝑛,)

Our Results
!𝑂(𝑛𝑑 + poly(𝑑))

Suppose
• Input is dense, nnz 𝑨 = 4Ω(𝑛𝑑)
• Input is tall, 𝑛 = Ω(poly 𝑑)
⇒ Nearly linear / near-optimal time!

“Solving Tall Dense Linear Programs in Nearly Linear Time”

Dual
max

!: 𝑨!$%
𝑏&𝑦

Primal
min

'$(: 𝑨.')*
𝑐&𝑥

“Minimum Cost Flows, MDPs, and ℓ'-Regression
in Nearly Linear Time for Dense Instances”

M𝑂(𝑛𝑑 + 𝑑/)

M𝑂(𝑛𝑑 + 𝑑*.1)

More nearly linear time algorithms!

𝐴 ∈ ℝ"×!

𝑛 ≥ 𝑑

How?

[LS14,LS15,LS19]
!𝑂(nnz 𝑨 + 𝑑+ 𝑑)

[CLS19,B19*]
!𝑂(𝑛,)

Broadly
• Dynamic sampling / sketching (as opposed to fixed in regression)
• Maintain approximate projections / change of basis (as opposed to high precision in previous)

Ingredient #1
• A new IPM
• Simplified primal-dual LS14
• Stable variants that allows

approximate projections

Ingredient #2, 3, 4, 5, …
• New data structures
• Sketching to avoid looking at all

constraints each iteration.
• Dealing with adaptive queries

(iterates depend on output)

Dual
max

!: 𝑨!$%
𝑏&𝑦

Primal
min

'$(: 𝑨.')*
𝑐&𝑥

Our Results
!𝑂(𝑛𝑑 + poly(𝑑))

𝐴 ∈ ℝ"×!

𝑛 ≥ 𝑑

Why Study Interior Point Methods (IPM)?
In General?

• Pervasive robust optimization framework

• Solves to high precision (i.e. linearly convergent)

• Deals with difficult problems (i.e. ill-conditioning)

• Can outperform theory (practice ≥ worst case)

As a Theorist?

• Tool for finding and exploiting problem structure and obtaining
faster high-precision methods.

• Combinatorial optimization:
• Fastest known algorithms in many problem settings
• Minimum cost flow: [DS08,LS14]
• Maximum flow: [M13,M16,LS20,KLS20,BLLSSSSW21,GLP21]
• Shortest path negative edge lengths: [CMSV17, AMV20]

• Continuous optimization:
• Fastest known algorithms in many problem settings
• ℓ$-Regression [LS15, CLS19, B20, JSWZ20, BLLSSSSW21]
• Geometric median [CLMPS16]
• Markov decision process [LS15 / SWWYY18, BLLSSSSW21]
• Empirical risk minimization [LSZ19]

What about combinatorial
optimization?

Minimum Cost
Transshipment
Continuous
• 𝐴 ∈ ℝ`×* is graph incidence matrix
• Each row is all-zero except for exactly

one 1 and one −1.

Combinatorial
• Directed graph graph 𝐺 = 𝑉, 𝐸
• Vertex imbalances 𝑏 ∈ ℝb

• Edge costs 𝑐 ∈ ℝc

• Goal: find flow 𝑥 ∈ ℝ$dc that routes
demands 𝑏 and minimizes cost 𝑐&𝑥

Dual
max

!: 𝑨!$%
𝑏&𝑦

Primal
min

'$(: 𝑨.')*
𝑐&𝑥

\

5

10

-3
Row 𝑗 has 1 at 𝑖 and −1 at 𝑗 if edge from 𝑖 to 𝑗

Why?
Generalizes minimum cost matching in bipartite

graph and shortest path with negative edge lengths.

State of the art

Year Authors Runtime 4𝑶(⋅)
1969-1973 Dinic, Karzanov, Hopcroft, Karp 𝑚 𝑛

1981 Ibarra, Moran 𝑛2

2013 Mądry 𝑚$3/4

2020 Liu, Sidford 𝑚$$/567($)

2020 Liu, Kathuria, Sidford 𝑚&//67($)

2020 Brand, Lee, Nanongkai, Peng,
Saranurak, Sidford, Song, Wang 𝒎 + 𝒏𝟏.𝟓

• 𝑚-edge, 𝑛-node graph
• Integral costs and demands
• M𝑂 hides poly(log max 𝑛, 𝑏 < , 𝑐 <)

𝑤 < 2.373 is current fast matrix multiplication (FMM) constant [W13]

Bipartite Matching
Year Authors Runtime 4𝑶(⋅)
1972 Edmonds, Karp 𝑚𝑛

2008 Daitch, Spielman 𝑚//*

2014 Lee, Sidford 𝑚 𝑛

2020
Brand, Lee, Nanongkai,

Peng, Saranurak,
Sidford, Song, Wang

𝒎 + 𝒏𝟏.𝟓

Minimum Cost Transshipment

• All improvements since 1980s either use IPMs (or are from faster FMM)
• Recent result are first nearly linear time for any density (nearly linear whenever average degree Ω(𝑛))

“Bipartite Matching in Nearly-linear Time on Moderately Dense Graphs”

Approach: graph-based data structures for new IPM

This Talk

Part 1: Overview
• Survey recent history of interior point methods for linear programming
• Present and motivate recent nearly linear time algorithms

Part 2: IPM
• Brief intro to recent IPM advances and our new IPMs

Part 3: Data Structures
• Data structures for efficiently implementing our IPMs
• Highlight difficulty and a key technique

Note: will hide many details throughout the talk and
simplify many parts. Happy to discuss details after.

ü

Two Key Ideas for Interior Point Methods
Idea #1: Stay in the Interior
• Maintain a feasible point
• Minimize cost over time

Idea #2: Really Stay in the Interior
• “barrier” to stay away from boundary

Path Following Warm-up

Algorithm
• Initialize: 𝑡 > 0 and 𝑦= ≈ 𝑥=
• Iterate: repeat until 𝑐+𝑦= small

• Move path parameter
• 𝑡 ≔ 1 + 𝜂= 𝑡

• Center (i.e. Newton Steps)
• Until 𝑦 ≈ 𝑥= (one step enough)

• 𝑦 ≔ 𝑦 − 𝜂> 𝛻*𝑓= 𝑦
,$
𝛻𝑓=(𝑦)

• Idea
• Roughly 4O(𝜂=,$) iterations suffice

Barrier	function
A	“nice”	function		𝑝 from	
interior	to	ℝ	s.t.

lim
'→@7A"!BC'

𝑝(𝑦) → ∞

Penalized	Objective
𝑓= 𝑦 ≝ 𝑡 ⋅ 𝑐+𝑦 + 𝑝(𝑦)

Discretization* of the central path

𝑦3

𝑦<

𝑦=

Central	Path
For	path	parameter	𝑡 > 0 the

minimizers 𝑦= = argmin' 𝑓=(𝑦)
form the central path a continuous

curve from center (𝑦3) to solution (𝑦<).

center

optimum

Upshot
IPM reduces LP ⇒ solving sequence of linear systems

max
!: 𝑨!$%

𝑏&𝑦

Renegar’s Algorithm

Analytic Center
𝑦% = argmin! 𝑝ℓ(𝑦)

𝒏

• Dikin ellipse : contour of second order approximation

• 𝑛-rounding: scaling by factor of 𝑛 contains polytope

• Yields A𝑂 𝑛 iteration algorithm

min
� ∶ 𝑨�$�

𝑐&𝑥
One of simplest instantiations

Log Barrier

𝑝ℓ 𝑦 =∑,∈[/] ln
1

2D
.!3*D

How improve?

Log Barrier
𝑝4 𝑦 =∑,∈[/]− ln 𝑎,&𝑦 − 𝑏,

min
! ∶ 𝑨!$�

𝑐&𝑦

• Problem : adversary can effectively re-weight barrier

Redundant constraints

Weighted Log Barrier

𝑝5 𝑦 =∑,∈[/]𝑤, ln
1

2D
.!3*D

• Solution : optimize over weights [LS14] Path Finding!

Core to many recent combinatorial improvements [M13, M16, CMSV17, LS20, LST20, GLP21]

Leveraged for M𝑂 𝑑 method

Log Barrier

𝑝4 𝑦 =∑,∈[/] ln
1

2D
.!3*D

A Primal-Dual View

Equivalent Optimality Criteria
• Primal dual feasible points

• 𝑥�, 𝑠�, 𝑦� ∈ ℝ$d* ×ℝ$d* ×ℝ�

• 𝐴&𝑥� = 𝑏 and 𝐴𝑦 + 𝑠 = 𝑐 (𝐴𝑦 ≥ 𝑐)

• Optimality condition
• 𝑥�𝑠� = 𝑤�/𝑡 for	all	𝑖 ∈ [𝑛]

Idea
• Increase 𝒕 for bounded 𝒘

Weighted Log Barrier

𝑝5 𝑦 =∑,∈[/]𝑤, ln
1

2D
.!3*D

Dual
max

!: 𝑨!$%
𝑏&𝑦

Primal
min

'$(: 𝑨.')*
𝑐&𝑥

Weighted central path point
𝑦5 = argmin! 𝑡 ⋅ 𝑏&𝑦 + 𝑝5(𝑦)

Helpful in many recent advances

Algorithms

[R84] Log Barrier (O𝑂(𝑛)-iteration)

• 𝑤 = 1`
• Dikin ellipse is O𝑂(𝑛) rounding

[LS14,19] Lewis Weight Barrier

• O𝑂(𝑑)-iteration)
• 𝑤 ≈ 𝜎�(𝑆�'/(𝑋'/(𝐴) for 𝑝 = O𝑂(1)
• 𝜎�(𝐴) are ℓ� Lewis Weights

• (relative row importance in ℓ�)
• Dikin ellipse is O𝑂(𝑑) rounding

Equivalent Optimality Criteria
• Primal dual feasible points

• 𝑥�, 𝑠�, 𝑦� ∈ ℝ$d* ×ℝ$d* ×ℝ�

• 𝐴&𝑥� = 𝑏 and 𝐴𝑦 + 𝑠 = 𝑐 (𝐴𝑦 ≥ 𝑐)

• Optimality condition
• 𝑥�𝑠� = 𝑤�/𝑡 for	all	𝑖 ∈ [𝑛]

Idea
• Increase 𝒕 for bounded 𝒘

Dual
max

!: 𝑨!$%
𝑏&𝑦

Primal
min

'$(: 𝑨.')*
𝑐&𝑥

Algorithms

[R84] Log Barrier (O𝑂(𝑛)-iteration)

• 𝑤 = 1`
• Dikin ellipse is O𝑂(𝑛) rounding

[LS14,19] Lewis Weight Barrier

• O𝑂(𝑑)-iteration)
• 𝑤 ≈ 𝜎�(𝑆�'/(𝑋'/(𝐴) for 𝑝 = O𝑂(1)
• 𝜎�(𝐴) are ℓ� Lewis Weights

• (relative row importance in ℓ�)
• Dikin ellipse is O𝑂(𝑑) rounding

“Robust” Path [CLS19,B19*] (O𝑂(𝑛�)-time)
• Potential crudely penalizing 𝑥�𝑠� ≠ 𝑤�/𝑡
• Newton step in direction of gradient of

potential to decrease
• Maintain 𝑥, 𝑠 approximately!

``Robust LS’’ [BLSS19, BLNPSSW20]
• 𝑤 ≈ 𝜎((𝑆�'/(��𝑋'/(��) for 𝛼 = 1/ O𝑂(1)
• 𝜎(𝐴 = leverage scores. Can approximate

with linear system solves!
• Similar path, different approximation!

Dual
max

!: 𝑨!$%
𝑏&𝑦

Primal
min

'$(: 𝑨.')*
𝑐&𝑥

Algorithms

Our Iteration (roughly)
• Approximately feasible (𝑥� , 𝑠� , 𝑦�)
• Approximations �̅�� ≈ 𝑥� and �̅�� ≈ 𝑠�
• Improvement direction 𝑑� induced by 𝜎�
• Approximate Hessian Y𝐻� ≈ 𝐴& [𝑋� ̅𝑆��'𝐴
• Approximate Newton step

• 𝑥��' ≈ 𝑥� + 𝜂�(𝐼 − 𝑋�𝑆�
�'
𝐴𝐻��'𝐴&)𝑋�𝑑�

• 𝑠��' ≈ 𝑠� + 𝜂�𝐴𝐻�
�'
𝐴&𝑋�𝑑

• Issue:
• Y𝐻 ≈ 𝐴& [𝑋 ̅𝑆�'𝐴 loses feasibility
• [BLSS19, BLNPSSW20] address differently

“Robust” Path [CLS19,B19*] (O𝑂(𝑛�)-time)
• Potential crudely penalizing 𝑥�𝑠� ≠ 𝑤�/𝑡
• Newton step in direction of gradient of

potential to decrease
• Maintain 𝑥, 𝑠 approximately!

``Robust LS’’ [BLSS19, BLNPSSW20]
• 𝑤 ≈ 𝜎((𝑆�'/(��𝑋'/(��) for 𝛼 = 1/ O𝑂(1)
• 𝜎(𝐴 = leverage scores. Can approximate

with linear system solves!
• Similar path, different approximation!

Dual
max

!: 𝑨!$%
𝑏&𝑦

Primal
min

'$(: 𝑨.')*
𝑐&𝑥

Algorithms

Our Iteration (roughly)
• Approximately feasible (𝑥� , 𝑠� , 𝑦�)
• Approximations �̅�� ≈ 𝑥� and �̅�� ≈ 𝑠�
• Improvement direction 𝑑� induced by 𝜎�
• Approximate Hessian Y𝐻� ≈ 𝐴& [𝑋� ̅𝑆��'𝐴
• Approximate Newton step

• 𝑥��' ≈ 𝑥� + 𝜂�(𝐼 − 𝑋�𝑆�
�'
𝐴𝐻��'𝐴&)𝑋�𝑑�

• 𝑠��' ≈ 𝑠� + 𝜂�𝐴𝐻�
�'
𝐴&𝑋�𝑑

• Issue:
• Y𝐻 ≈ 𝐴& [𝑋 ̅𝑆�'𝐴 loses feasibility
• [BLSS19, BLNPSSW20] address differently

Approach

• This a O𝑂(𝑑) iteration method!
• Goal: O𝑂(𝑛𝑑 + poly 𝑑) runtime
• Need to implement steps in 𝑜(𝑛𝑑) on

average!
• Idea: leverage structure of the IPM and the

flexibility of approximating to design a fast
method.

Dual
max

!: 𝑨!$%
𝑏&𝑦

Primal
min

'$(: 𝑨.')*
𝑐&𝑥

[BLSS19]
Fairly short proof of primal-dual
A𝑂(𝑑) iteration algorithm.

[BLNPSSW21]
Simplifies handling
of feasibility issues.

[BLLSSSW21] More general constraints and new data structures.

This Talk

Part 1: Overview
• Survey recent history of interior point methods for linear programming
• Present and motivate recent nearly linear time algorithms

Part 2: IPM
• Brief intro to recent IPM advances and our new IPMs

Part 3: Data Structures
• Data structures for efficiently implementing our IPMs
• Highlight difficulty and key techniques

Note: will hide many details throughout the talk and
simplify many parts. Happy to discuss details after.

ü
ü

How to implement?
Dual

max
!: 𝑨!$%

𝑏&𝑦
Primal
min

'$(: 𝑨.')*
𝑐&𝑥

… and why is each paper ≥100 pages?

Vector maintenance
data structure

Leverage score maintenance
data structure

Gradient maintenance
data structure

Inverse maintenance
data structure

Feasibility maintenance
analysis

Sampling

Initial point
Our Iteration (roughly)
• Approximately feasible (𝑥� , 𝑠� , 𝑦�)
• Approximations �̅�� ≈ 𝑥� and �̅�� ≈ 𝑠�
• Improvement direction 𝑑� induced by 𝜎�
• Approximate Hessian Y𝐻� ≈ 𝐴& [𝑋� ̅𝑆��'𝐴
• Newton step

• 𝑥��' ≈ 𝑥� + 𝜂�(𝐼 − 𝑋�𝑆�
�'
𝐴𝐻��'𝐴&)𝑋�𝑑�

• 𝑠��' ≈ 𝑠� + 𝜂�𝐴𝐻�
�'
𝐴&𝑋�𝑑�

• Issue:
• Y𝐻 ≈ 𝐴& [𝑋� ̅𝑆��'𝐴 loses feasibility

[BLSS19]

[BLNPSSW20]

How to implement?
Dual

max
!: 𝑨!$%

𝑏&𝑦
Primal
min

'$(: 𝑨.')*
𝑐&𝑥

… and why is each paper ≥100 pages?

Vector maintenance
data structure

Gradient maintenance
data structure

Inverse maintenance
data structure

Initial point
Our Iteration (roughly)
• Approximately feasible (𝑥� , 𝑠� , 𝑦�)
• Approximations �̅�� ≈ 𝑥� and �̅�� ≈ 𝑠�
• Improvement direction 𝑑� induced by 𝜎�
• Approximate Hessian Y𝐻� ≈ 𝐴& [𝑋� ̅𝑆��'𝐴
• Newton step

• 𝑥��' ≈ 𝑥� + 𝜂�(𝐼 − 𝑋�𝑆�
�'
𝐴𝐻��'𝐴&)𝑋�𝑑�

• 𝑠��' ≈ 𝑠� + 𝜂�𝐴𝐻�
�'
𝐴&𝑋�𝑑�

• Issue:
• Y𝐻 ≈ 𝐴& [𝑋� ̅𝑆��'𝐴 loses feasibility

Leverage score maintenance
data structure

Feasibility maintenance
analysis

Sampling

[BLSS19]

[BLNPSSW20]

Difficulty in achieving !𝑶(𝒏𝒅 + 𝒑𝒐𝒍𝒚 𝒅)

Interior Point Method
• M𝑂(𝑑) iteration method

• Goal: maintain ̅𝑠= ≈ 𝑠= = 𝑨𝑦= − 𝑐 ∈ ℝE3
" (𝑨𝑦= ≥ 𝑐)

• Need know when 𝑨𝑦= closer to 𝑐

• 4O(𝑛 𝑑 + poly(𝑑)) on average per iteration

Problem
• Unknown how to efficiently compress 𝑦 𝐴𝑦 ≥ 𝑏}
• Unknown how to sample or build data structure

for arbitrary changes to 𝑦
• Hard case:

=
𝑥3

In contrast to problems like regression where
“easier to obtain M𝑂(𝑛𝑑 + poly 𝑑) methods.

Why Any Hope?

Setup (simplified)
• 𝑠��' ≝ 𝑠� + 𝑨𝑑�
• 𝑠��' ≥ 0

Goal
• Maintain �̅� ≈ 𝑠�

Problem
• What if this change is arbitrary?

Classic Observation
• In most IPMs changes are sparse on

average (enables inverse maintenance)
• Renegar: 𝑺��' 𝑠��' − 𝑠� (= 𝑂(1)
• Ours: 𝑺��' 𝑠��' − 𝑠� ≈�! = 𝑂(1)

• 𝑺��' 𝑠��' − 𝑠� (= 𝑂 𝑛/𝑑
• Every O𝑂(𝑑) iterations O𝑂(𝑛)

coordinates change by constant
Goal: detect in O𝑂(𝑑) time on average!

study slacks for simplicity
𝑥3

Vector Maintenance

Data Structure Goal
• Maintain 𝑠� ≈ 𝑠� ≥ 0
• 𝑠� ≝ 𝑠d + ∑�∈[�]𝑨𝑑�

Result
• Can maintain after 𝑇 step in

O𝑂(𝑛𝑑 + 𝑇(𝑛 + 𝑑 ∑�∈[�] 𝑺�
�'𝑨𝑑� (

(
)

• Is O𝑂 𝑛𝑑 when 𝑇 = 𝑂(𝑑)

simplified version of requisite data
structure problem

Idea: Warmup
Detect when single coordinate changes

by a constant in one step.

How Compute Large Entries of a Vector?

ℓ6/ℓ𝟐-Heavy Hitters Sketch Theorem

∀𝜖, 𝑛 > 0 can build 𝚽 ∈ ℝ 89(;FG)×/ with A𝑂(1)
non-zeros per column where from 𝚽𝑥 can get in
A𝑂(𝜖3>) all 𝑖 ∈ [𝑛] with 𝑥, ≥ 𝜖 ⋅ 𝑥 >.

very well-studied problem

𝑥Φ nM𝑂(𝜖,*)

[Charikar, Chen, Farach-Colton'04, Cormode, Muthukrishnan'05, Cormode,
Hadjieleftheriou'08, Kane, Nelson, Porat, Woodruff'11, Pagh'13, Nelson, Nguyen,
Woodruff'12, Indyk, Kapralov'14, Larsen, Nelson, Nguyen, Thorup'16, Nakos, Song, Wang’19]

Vector Maintenance

Data Structure Goal

• Maintain 𝑠= ≈ 𝑠= ≥ 0

• 𝑠= ≝ 𝑠3 + ∑H∈[=]𝑨𝑑H

Result

• Can maintain after 𝑇 step in

M𝑂(𝑛𝑑 + 𝑇(𝑛 + 𝑑 ∑H∈[-] 𝑺H
,$𝑨𝑑H *

*
)

• Is M𝑂 𝑛𝑑 when 𝑇 = 𝑂(𝑑)

Key Tool: ℓ6 − ℓ𝟐 Heavy Hitters

• ∀𝜖, 𝑛 > 0 can build 𝚽 ∈ ℝ 89(;FG)×/ with A𝑂(1) non-zeros
per column where from 𝚽𝑥 can get in A𝑂(𝜖3>) all 𝑖 ∈ [𝑛]
with 𝑥, ≥ 𝜖 ⋅ 𝑥 >.

Idea

• Precompute 𝚽;𝑺?31𝑨 for different all 𝜖 = 2,

• If no-multiplicative change so far

∑,∈ ? 𝑺,
31𝑨𝑑, >

> ≤ 𝑂 𝑡∑,∈ ? 𝑺,31𝑨𝑑, >
> ≝ Θ(𝜖?3>)

• Checking 𝚽;K𝑺?
31𝑨 ∑,∈[?]𝑑, gives all multiplicative

change within time budget!
• Apply for every power of 2, check if row change every

step, every 2 steps, every 4, etc. and update 𝑆? as
changes

Problem!

Oblivious Adversary Issue: Φ only works if
𝑥 independent of randomness in Φ!

Serious recurring issue in using data
structures for optimization.

Solution: only output if true change is large! Output
independent of randomness! (sketch just saves time!)

Graph Vector Maintenance

Data Structure Goal
• Maintain 𝑠! ≈ 𝑠! ≥ 0
• 𝑠! ≝ 𝑠" +∑#∈[!]𝑨𝑑#
• 𝐴 is incidence matrix of 𝑛-node 𝑚-edge graph
• 𝐴𝑑# ' = 𝑑# (− 𝑑#) for 𝑒 = (𝑗, 𝑘)

Result
• Can maintain after 𝑇 step in

8𝑂(𝑚 +𝑇(𝑛 +∑#∈ * 𝑺#+,𝑨𝑑# -
-))

• Is 8𝑂 𝑚+𝑛,./ when 𝑇 = 𝑂(𝑛)

Key Tool #1: Dynamic Expander Decomposition
• [N17,Wul17,NSW17,W19,CCGLLNPS20,BBGNSSS20]
• Can maintain decomposition of graph into

expanders (well-connected subgraphs) with A𝑂(𝑛)
total vertices in A𝑂(1) per edge insertion / deletion

Key Tool #2 : Cheeger’s Inequality
• Expanders ≈ diagonal matrices
• If large multiplicative change, then large 𝑑, relative

to degree on that vertex.
• Apply for every power of 2, checking if change

every step, every 2 steps, every 4, etc.

Remaining Data Structures

Leverage Score Maintenance
• JL + vector maintenance
• Matrix generalization

Inverse Maintenance
• Sparsification and low-rank

updates [V89,LS15,CLS19,B19]
• Leverage score sampling [LS15]
• Randomness hiding [LS15]

Feasibility Maintenance
• Make iterates correct in

expectation
• Take some steps to help feasibility

Gradient Maintenance
• Leverage structure of steepest

descent steps on Φ
• Leverage discrete structure of

approximate iterates

Hiding many details Upshot

Sketching the Central Path: can make
repeated use of sketches to save iteration cost

Upshot Open the door to more
data structure use.

“Simpler” IPM in later results.
Requires “sampling” data structures.

This Talk

Part 1: Overview
• Survey recent history of interior point methods for linear programming
• Present and motivate recent nearly linear time algorithms

Part 2: IPM
• Brief intro to recent IPM advances and our new IPMs

Part 3: Data Structures
• Data structures for efficiently implementing our IPMs
• Highlight difficulty and key techniques

Note: will hide many details throughout the talk and
simplify many parts. Happy to discuss details after.

ü
ü
ü

Minimum Cost Flows, MDPs, and ℓ+-Regression
in Nearly Linear Time for Dense Instances

Markov Decision Process
• 𝑆-states 𝐴-actions
• O𝑂 𝑆(𝐴 + 𝑆(.�

Maximum Flow
• 𝑚-edges, 𝑛-nodes, integer

capacities at most 𝑈
• O𝑂(𝑚 + 𝑛'.�)

ℓ𝟏-Regression
• min
�∈ℝ"

𝑨𝑥 − 𝑏 ' for 𝑨 ∈ ℝ*×�

• O𝑂(𝑛𝑑 + 𝑑(.�)

Further improvements and applications
Using additional techniques.

Thank you
Questions?

Contact Info:
• email: sidford@stanford.edu
• website: www.aaronsidford.com

Aaron Sidford

