Interior Point Methods for Nearly Linear Time Algorithms

Stanford University Departments of Management Science & Engineering and Computer Science

Aaron Sidford

Contact Info:

- email: sidford@stanford.edu
- website: www.aaronsidford.com

Thank You Prof. Yurii Nesterov!

Laplacian System Solving

Coordinate Descent

Undirected Maximum Flow

 Nesterov's presentation of firstorder methods

Linear Programming

- Self-concordance
- Univeral barrier

Acceleration

- Non-convex optimization
- Ball-constrained optimization oracle
- Max-type functions

Dual Extrapolation

- Optimal transport
- Acceleration

Solving Tall Dense Linear Programs in Nearly Linear Time

joint work with Jan van den Brand, Yin Tat Lee, Zhao Song

Bipartite Matching in Nearly-linear Time on Moderately Dense Graphs

joint work with Jan van den Brand, Yin Tat Lee, Danupon Nanongkai, Richard Peng, Thatchaphol Saranurak, Zhao Song, and Di Wang

Minimum Cost Flows, MDPs, and ℓ_1 -Regression in Nearly Linear Time for Dense Instances

joint work with Jan van den Brand, Yin Tat Lee, Yang P. Liu, Thatchaphol Saranurak, Aaron Sidford, Zhao Song, Di Wang

Note: will hide many details throughout the talk and simplify many parts. Happy to discuss details after.

This Talk

Part 1: Overview

- Survey recent history of interior point methods for linear programming
- Present and motivate recent nearly linear time algorithms

Part 2: IPM

• Brief intro to recent IPM advances and our new IPMs

Part 3: Data Structures

- Data structures for efficiently implementing our IPMs
- Highlight difficulty and key techniques

Linear Programming

$b^{\mathsf{T}}y$ $\max_{\substack{y:Ay \ge c}}$ **Standard Methods**

Goal high precision solutions in poly time

Ignoring first order methods with polynomial dependence on condition number or accuracy

- Simplex
 - Fast in practice
 - Slow in theory
- Ellipsoid
 - Moderate in practice
 - Moderate in theory
- Interior Point
 - Often fastest in theory
 - Often fast in practice

Why Study Interior Point Methods (IPM)?

In General?

- General robust optimization framework
- Solves to high precision (i.e. linearly convergent)
- Deals with difficult problems (i.e. ill-conditioning)
- Can outperform theory (practice ≥ worst case)

Many open problems and active research area

As a Theorist?

- Tool for finding and exploiting problem structure and obtaining faster high-precision methods.
- Combinatorial optimization:
 - Fastest known algorithms in many problem settings
 - Minimum cost flow: [DS08,LS14]
 - Maximum flow: [M13,M16,LS20,KLS20,BLLSSSSW21,GLP21]
 - Shortest path negative edge lengths: [CMSV17, AMV20]
- Continuous optimization:
 - Fastest known algorithms in many problem settings
 - ℓ_1 -Regression [L**S**15, CLS19, B20, JSWZ20, BLLSS**S**SW21]
 - Geometric median [CLMP**S**16]
 - Markov decision process [LS15 / SWWYY18, BLLSSSSW21]
 - Empirical risk minimization [LSZ19]

Interior Point Methods (IPM)

Previous Work

up to the last ~5 years

for diagonal **D** compute $(\mathbf{A}^{\mathsf{T}}\mathbf{D}^{2}\mathbf{A})^{-1}f$ or $\min_{\mathbf{y}\in\mathbb{R}^{d}}\|\mathbf{D}\mathbf{A}\mathbf{y}-e\|_{2}^{2}$

<u>Year</u>	<u>Author(s)</u>	Iteration Count $\widetilde{0}(\cdot)$	Iteration Cost	
1984	Karmarkar	n	Solve 1 linear system	Project onto image of
1986	Renegar	\sqrt{n}	Solve 1 linear system	rescaled A
1989	Vaidya	d	Solve <i>d</i> linear systems	
1989	Vaidya	$(nd)^{1/4}$	Solve <i>n</i> linear systems	Compute projection
1994	Nesterov & Nemirovskii	\sqrt{d}	Volume of polar polytope	(or its diagonal)

Lee & Sidford 14 / 19 An $\tilde{O}(\sqrt{d})$ iteration algorithm that solves $\tilde{O}(1)$ linear systems per iteration. "Universal Barrier" Applies to all convex optimization

diag $(\boldsymbol{D}\boldsymbol{A}(\boldsymbol{A}^{\mathsf{T}}\boldsymbol{D}^{2}\boldsymbol{A})^{-1}\boldsymbol{A}^{T}\boldsymbol{D})$

Harder than linear programming

No general improvement to previous slide in past 5 years.

Running Times

previous state-of-the art

Long history of runtime improvements by improving linear system [K84,NN89,V89,LS14,LS15,CLS19,B19]

$\frac{[\text{LS14,LS15,LS19}]}{\tilde{O}((\text{nnz}(A) + d^2)\sqrt{d})}$

- [LS14 / LS19] IPM , $\tilde{O}(\sqrt{d})$ iteration of system solving
- [LS 15] "inverse maintenance" data structures

Previous best known running time for large (poly-bounded) n.

Question Can we improve further?

- "robust" primal dual variant of [R84], $ilde{O}(\sqrt{n})$ iteration
- Precise projection matrix maintenance and approximate iterate maintenance

Matches best known running time for finding x with $A^{T}x = b$ when $n \approx d$ and no sparsity assumptions. [PV20]

Question

Can we solve large instances optimally?

More nearly linear time algorithms!

Broadly

- Dynamic sampling / sketching (as opposed to fixed in regression)
- Maintain approximate projections / change of basis (as opposed to high precision in previous)

Why Study Interior Point Methods (IPM)?

In General?

- Pervasive robust optimization framework
- Solves to high precision (i.e. linearly convergent)
- Deals with difficult problems (i.e. ill-conditioning)
- Can outperform theory (practice \geq worst case)

What about combinatorial optimization?

As a Theorist?

- Tool for finding and exploiting problem structure and obtaining faster high-precision methods.
- Combinatorial optimization:
 - Fastest known algorithms in many problem settings
 - Minimum cost flow: [DS08,LS14]
 - Maximum flow: [M13,M16,LS20,KLS20,BLLSSSSW21,GLP21]
 - Shortest path negative edge lengths: [CMSV17, AMV20]
- Continuous optimization:
 - Fastest known algorithms in many problem settings
 - ℓ_1 -Regression [L**S**15, CLS19, B20, JSWZ20, BLLSS**S**SW21]
 - Geometric median [CLMP**S**16]
 - Markov decision process [LS15 / SWWYY18, BLLSSSSW21]
 - Empirical risk minimization [LSZ19]

Minimum Cost Transshipment

Continuous

- $A \in \mathbb{R}^{m \times n}$ is graph incidence matrix
- Each row is all-zero except for exactly one 1 and one -1.

Combinatorial

- Directed graph graph G = (V, E)
- Vertex imbalances $b \in \mathbb{R}^V$
- Edge costs $c \in \mathbb{R}^{E}$
- **Goal**: find flow $x \in \mathbb{R}^{E}_{\geq 0}$ that routes demands b and minimizes cost $c^{\top}x$

Row j has 1 at i and -1 at j if edge from i to j

Why?

Generalizes minimum cost matching in bipartite graph and shortest path with negative edge lengths.

State of the art

• *m*-edge, *n*-node graph

Bipartite Matching

- Integral costs and demands
- \tilde{O} hides poly(log(max{ $n, ||b||_{\infty}, ||c||_{\infty}$ }))

Minimum Cost Transshipment

Year	Authors	Runtime $\widetilde{oldsymbol{ heta}}(\cdot)$
1972	Edmonds, Karp	mn
2008	Daitch, Spielman	$m^{3/2}$
2014	Lee, Sidford	$m\sqrt{n}$
2020	Brand, Lee, Nanongkai, Peng, Saranurak, Sidford , Song, Wang	$m + n^{1.5}$

Year	Authors	Runtime $\widetilde{oldsymbol{ heta}}(\cdot)$
1969-1973	Dinic, Karzanov, Hopcroft, Karp	$m\sqrt{n}$
1981	Ibarra, Moran	n^{ω}
2013	Mądry	$m^{10/7}$
2020	Liu, Sidford	$m^{11/8+o(1)}$
2020	Liu, Kathuria, Sidford	$m^{4/3+o(1)}$
2020	Brand, Lee, Nanongkai, Peng, Saranurak, Sidford , Song, Wang	$m + n^{1.5}$

- All improvements since 1980s either use IPMs (or are from faster FMM)
- Recent result are first nearly linear time for any density (nearly linear whenever average degree $\Omega(\sqrt{n})$)

"Bipartite Matching in Nearly-linear Time on Moderately Dense Graphs"

Approach: graph-based data structures for new IPM w < 2.373 is current fast matrix multiplication (FMM) constant [W13]

Note: will hide many details throughout the talk and simplify many parts. Happy to discuss details after.

This Talk

Part 1: Overview

- Survey recent history of interior point methods for linear programming
- Present and motivate recent nearly linear time algorithms

Part 2: IPM

• Brief intro to recent IPM advances and our new IPMs

Part 3: Data Structures

- Data structures for efficiently implementing our IPMs
- Highlight difficulty and a key technique

Two Key Ideas for Interior Point Methods

Idea #1: Stay in the Interior

- Maintain a feasible point
- Minimize cost over time

Idea #2: Really Stay in the Interior

"barrier" to stay away from boundary

Path Following Warm-up

<u>Algorithm</u>

- Initialize: t > 0 and $y_t \approx x_t$
- **Iterate**: repeat until $c^{\top}y_t$ small
- Move path parameter
 - $t \coloneqq (1 + \eta_t)t$
- Center (i.e. Newton Steps)
 - Until $y \approx x_t$ (one step enough)
 - $y \coloneqq y \eta_c (\nabla^2 f_t(y))^{-1} \nabla f_t(y)$
- Idea
 - Roughly $\tilde{\mathrm{O}}({\eta_t}^{-1})$ iterations suffice

Barrier function

A "nice" function p from interior to \mathbb{R} s.t.

 $\lim_{y \to boundary} p(y) \to \infty$

 $\frac{\text{Penalized Objective}}{f_t(y) \stackrel{\text{def}}{=} t \cdot c^\top y + p(y)}$

<u>Central Path</u>

For path parameter t > 0 the minimizers $y_t = \operatorname{argmin}_y f_t(y)$ form the *central path* a continuous curve from *center* (y_0) to solution (y_{∞}) .

Discretization* of the central path

y_t y_∞

∠center

 y_0

optimum

Core to many recent combinatorial improvements [M13, M16, CMSV17, LS20, LST20, GLP21]

Helpful in many recent advances

Equivalent Optimality Criteria

- Primal dual feasible points
 - $(x_w, s_w, y_w) \in \mathbb{R}^n_{\geq 0} \times \mathbb{R}^n_{\geq 0} \times \mathbb{R}^d$
 - $A^{\mathsf{T}}x_w = b$ and Ay + s = c $(Ay \ge c)$
- Optimality condition
 - $x_i s_i = w_i/t$ for all $i \in [n]$

<u>Idea</u>

Increase t for bounded w

Algorithms

[R84] Log Barrier ($\tilde{O}(\sqrt{n})$ -iteration)

- $w = \vec{1}_m$
- Dikin ellipse is $\tilde{O}(n)$ rounding

[LS14,19] Lewis Weight Barrier

- $\tilde{O}(\sqrt{d})$ -iteration)
- $w \approx \sigma_p(S^{-1/2}X^{1/2}A)$ for $p = \tilde{O}(1)$
- $\sigma_p(A)$ are ℓ_p Lewis Weights
 - (relative row importance in ℓ_p)
- Dikin ellipse is $ilde{O}(d)$ rounding

$$\begin{array}{c}
\underline{Primal}\\
\min_{x \ge 0: A^{\top}x=b} c^{\top}x\\
\underbrace{Dual}\\
\max_{y: Ay \ge c} b^{\top}y
\end{array}$$

Equivalent Optimality Criteria

- Primal dual feasible points
 - $(x_w, s_w, y_w) \in \mathbb{R}^n_{\geq 0} \times \mathbb{R}^n_{\geq 0} \times \mathbb{R}^d$
 - $A^{\mathsf{T}}x_w = b$ and Ay + s = c $(Ay \ge c)$
- Optimality condition
 - $x_i s_i = w_i/t$ for all $i \in [n]$

<u>Idea</u>

• Increase *t* for bounded *w*

Algorithms

[R84] Log Barrier ($\tilde{O}(\sqrt{n})$ -iteration)

- $w = \vec{1}_m$
- Dikin ellipse is $\tilde{O}(n)$ rounding

[LS14,19] Lewis Weight Barrier

- $\tilde{O}(\sqrt{d})$ -iteration)
- $w \approx \sigma_p(S^{-1/2}X^{1/2}A)$ for $p = \tilde{O}(1)$
- $\sigma_p(A)$ are ℓ_p Lewis Weights
 - (relative row importance in ℓ_p)
- Dikin ellipse is $ilde{O}(d)$ rounding

$$\underbrace{\frac{\text{Primal}}{\min_{x \ge 0: A^{\top}x = b}} c^{\top}x}_{y:Ay \ge c} \underbrace{\frac{\text{Dual}}{\max_{y:Ay \ge c}}}_{p_{T}}$$

<u>"Robust" Path</u> [CLS19,B19*] ($\tilde{O}(n^{\omega})$ -time)

- Potential crudely penalizing $x_i s_i \neq w_i/t$
- Newton step in direction of gradient of potential to decrease
- Maintain *x*, *s* approximately!

<u>**``Robust LS''**</u> [BL**S**S19, BLNP**S**SW20]

- $w \approx \sigma_2(S^{-1/2+\alpha}X^{1/2+\alpha})$ for $\alpha = 1/\tilde{O}(1)$
- σ₂(A) = leverage scores. Can approximate with linear system solves!
- Similar path, different approximation!

Algorithms

Our Iteration (roughly)

- Approximately feasible (x_t, s_t, y_t)
- Approximations $\bar{x}_t \approx x_t$ and $\bar{s}_t \approx s_t$
- Improvement direction d_t induced by σ_t
- Approximate Hessian $\overline{H}_t \approx A^{\mathsf{T}} \overline{X}_t \overline{S}_t^{-1} A$
- Approximate Newton step

•
$$x_{t+1} \approx x_t + \eta_x (I - \overline{X}_t \overline{S}_t^{-1} A H_t^{-1} A^{\top}) \overline{X}_t d_t$$

• $s_{t+1} \approx s_t + \eta_s A \overline{H}_t^{-1} A^{\top} \overline{X}_t d$

- Issue:
 - $\overline{H} \approx A^{\top} \overline{X} \overline{S}^{-1} A$ loses feasibility
 - [BLSS19, BLNPSSW20] address differently

<u>"Robust" Path</u> [CLS19,B19*] ($\tilde{O}(n^{\omega})$ -time)

- Potential crudely penalizing $x_i s_i \neq w_i/t$
- Newton step in direction of gradient of potential to decrease
- Maintain *x*, *s* approximately!

``Robust LS" [BLSS19, BLNPSSW20]

- $w \approx \sigma_2(S^{-1/2+\alpha}X^{1/2+\alpha})$ for $\alpha = 1/\tilde{O}(1)$
- σ₂(A) = leverage scores. Can approximate with linear system solves!
- Similar path, different approximation!

[BL**S**S19] Fairly short proof of primal-dual $\tilde{O}(\sqrt{d})$ iteration algorithm.

[BLNP**S**SW21] Simplifies handling of feasibility issues. $\begin{array}{c} \underline{\text{Primal}} \\ \min_{x \ge 0: A^{\mathsf{T}}x = b} c^{\mathsf{T}}x \end{array}$

$$\begin{array}{c} \underline{Dual} \\ \max_{y: Ay \ge c} b^{\top}y \end{array}$$

[BLLSSSW21] More general constraints and new data structures.

Our Iteration (roughly)

- Approximately feasible (x_t, s_t, y_t)
- Approximations $\bar{x}_t \approx x_t$ and $\bar{s}_t \approx s_t$
- Improvement direction d_t induced by σ_t
- Approximate Hessian $\overline{H}_t \approx A^{\mathsf{T}} \overline{X}_t \overline{S}_t^{-1} A$
- Approximate Newton step

•
$$x_{t+1} \approx x_t + \eta_x (I - \overline{X}_t \overline{S}_t^{-1} A H_t^{-1} A^{\mathsf{T}}) \overline{X}_t d_t$$

• $s_{t+1} \approx s_t + \eta_s A \overline{H}_t^{-1} A^{\mathsf{T}} \overline{X}_t d$

- Issue:
 - $\overline{H} \approx A^{\mathsf{T}} \overline{X} \overline{S}^{-1} A$ loses feasibility
 - [BLSS19, BLNPSSW20] address differently

Approach

- This a $\tilde{O}(\sqrt{d})$ iteration method!
- Goal: $\tilde{O}(nd + \text{poly}(d))$ runtime
- Need to implement steps in o(nd) on average!
- Idea: leverage structure of the IPM and the flexibility of approximating to design a fast method.

Note: will hide many details throughout the talk and simplify many parts. Happy to discuss details after.

This Talk

Part 1: Overview

- Survey recent history of interior point methods for linear programming
- Present and motivate recent nearly linear time algorithms

Part 2: IPM

• Brief intro to recent IPM advances and our new IPMs

Part 3: Data Structures

- Data structures for efficiently implementing our IPMs
- Highlight difficulty and key techniques

Difficulty in achieving $\tilde{O}(nd + poly(d))$

Interior Point Method

- $\tilde{O}(\sqrt{d})$ iteration method
- Goal: maintain $\bar{s}_t \approx s_t = Ay_t c \in \mathbb{R}^n_{\geq 0}$ $(Ay_t \geq c)$
- Need know when Ay_t closer to c
- $\tilde{O}(n\sqrt{d} + \text{poly}(d))$ on average per iteration

Problem

- Unknown how to efficiently compress $\{y \mid Ay \ge b\}$
- Unknown how to sample or build data structure for arbitrary changes to *y*
- Hard case:

In contrast to problems like regression where "easier to obtain $\tilde{O}(nd + \text{poly}(d))$ methods.

Why Any Hope?

study slacks for simplicity

Setup (simplified)

- $s_{t+1} \stackrel{\text{\tiny def}}{=} s_t + Ad_t$
- $s_{t+1} \ge 0$

<u>Goal</u>

• Maintain $\bar{s} \approx s_t$

Problem

• What if this change is arbitrary?

Classic Observation

- In most IPMs changes are sparse on average (enables inverse maintenance)
- Renegar: $\|S_t^{-1}(s_{t+1} s_t)\|_2 = O(1)$
- Ours: $\|S_t^{-1}(s_{t+1} s_t)\|_{\approx \sigma_t} = O(1)$
 - $\|\mathbf{S}_t^{-1}(s_{t+1} s_t)\|_2 = O(\sqrt{n/d})$
 - Every $\tilde{O}(\sqrt{d})$ iterations $\tilde{O}(n)$ coordinates change by constant

Goal: detect in $\tilde{O}(d)$ time on average!

Vector Maintenance

simplified version of requisite data structure problem

Data Structure Goal

- Maintain $\overline{s}_t \approx s_t \ge 0$
- $s_t \stackrel{\text{\tiny def}}{=} s_0 + \sum_{i \in [t]} Ad_i$

<u>Result</u>

- Can maintain after T step in
 - $\tilde{O}(nd + T(n + d\sum_{i \in [T]} \left\| \boldsymbol{S}_i^{-1} \boldsymbol{A} d_i \right\|_2^2)$
- Is $\tilde{O}(nd)$ when $T = O(\sqrt{d})$

Idea: Warmup Detect when single coordinate changes by a constant in one step.

very well-studied problem

How Compute Large Entries of a Vector?

[Charikar, Chen, Farach-Colton'04, Cormode, Muthukrishnan'05, Cormode, Hadjieleftheriou'08, Kane, Nelson, Porat, Woodruff'11, Pagh'13, Nelson, Nguyen, Woodruff'12, Indyk, Kapralov'14, Larsen, Nelson, Nguyen, Thorup'16, Nakos, Song, Wang'19]

Vector Maintenance

Data Structure Goal

- Maintain $\overline{s}_t \approx s_t \ge 0$
- $s_t \stackrel{\text{\tiny def}}{=} s_0 + \sum_{i \in [t]} Ad_i$

<u>Result</u>

• Can maintain after T step in

$$\tilde{O}(nd + T(n + d\sum_{i \in [T]} \left\| \boldsymbol{S}_i^{-1} \boldsymbol{A} d_i \right\|_2^2)$$

• Is $\tilde{O}(nd)$ when $T = O(\sqrt{d})$

Problem!

Oblivious Adversary Issue: Φ only works if x independent of randomness in Φ !

Solution: only output if true change is large! Output independent of randomness! (sketch just saves time!)

Serious recurring issue in using data structures for optimization.

Key Tool: $\ell_{\infty} - \ell_2$ Heavy Hitters

• $\forall \epsilon, n > 0$ can build $\Phi \in \mathbb{R}^{\tilde{O}(\epsilon^{-2}) \times n}$ with $\tilde{O}(1)$ non-zeros per column where from Φx can get in $\tilde{O}(\epsilon^{-2})$ all $i \in [n]$ with $|x_i| \ge \epsilon \cdot ||x||_2$.

<u>Idea</u>

- Precompute $\mathbf{\Phi}_{\epsilon} \mathbf{S}_{t}^{-1} \mathbf{A}$ for different all $\epsilon = 2^{i}$
- If no-multiplicative change so far

$$\left\|\sum_{i\in[t]}\boldsymbol{S}_{i}^{-1}\boldsymbol{A}d_{i}\right\|_{2}^{2} \leq O\left(t\sum_{i\in[t]}\left\|\boldsymbol{S}_{i}^{-1}\boldsymbol{A}d_{i}\right\|_{2}^{2}\right) \stackrel{\text{\tiny def}}{=} \Theta(\epsilon_{t}^{-2})$$

- Checking $\Phi_{\epsilon_t} S_t^{-1} A \sum_{i \in [t]} d_i$ gives all multiplicative change within time budget!
- Apply for every power of 2, check if row change every step, every 2 steps, every 4, etc. and update S_t as changes

Graph Vector Maintenance

Data Structure Goal

- Maintain $\overline{s}_t \approx s_t \ge 0$
- $s_t \stackrel{\text{\tiny def}}{=} s_0 + \sum_{i \in [t]} Ad_i$
- *A* is incidence matrix of *n*-node *m*-edge graph
- $[Ad_i]_e = [d_i]_j [d_i]_k$ for e = (j, k)

<u>Result</u>

• Can maintain after T step in

$$\tilde{O}(m + T(n + \sum_{i \in [T]} \left\| \boldsymbol{S}_i^{-1} \boldsymbol{A} d_i \right\|_2^2))$$

• Is $\tilde{O}(m + n^{1.5})$ when $T = O(\sqrt{n})$

Key Tool #1: Dynamic Expander Decomposition

- [N17,Wul17,NSW17,W19,CCGLLNPS20,BBGNS**S**S20]
- Can maintain decomposition of graph into expanders (well-connected subgraphs) with $\tilde{O}(n)$ total vertices in $\tilde{O}(1)$ per edge insertion / deletion

Key Tool #2 : Cheeger's Inequality

- Expanders ≈ diagonal matrices
- If large multiplicative change, then large d_i relative to degree on that vertex.
- Apply for every power of 2, checking if change every step, every 2 steps, every 4, etc.

Remaining Data Structures

Leverage Score Maintenance

- JL + vector maintenance
- Matrix generalization

Inverse Maintenance

- Sparsification and low-rank updates [V89,LS15,CLS19,B19]
- Leverage score sampling [LS15]
- Randomness hiding [LS15]

Upshot

Open the door to more data structure use.

Feasibility Maintenance

- Make iterates correct in expectation
- Take some steps to help feasibility

Gradient Maintenance

- Leverage structure of steepest descent steps on Φ
- Leverage discrete structure of approximate iterates

"Simpler" IPM in later results. Requires "sampling" data structures.

Upshot

repeated use of sketches to save iteration cost

Sketching the Central Path: can make

Note: will hide many details throughout the talk and simplify many parts. Happy to discuss details after.

This Talk

Part 1: Overview

- Survey recent history of interior point methods for linear programming
- Present and motivate recent nearly linear time algorithms

Part 2: IPM

• Brief intro to recent IPM advances and our new IPMs

Part 3: Data Structures

- Data structures for efficiently implementing our IPMs
- Highlight difficulty and key techniques

Minimum Cost Flows, MDPs, and ℓ_1 -Regression in Nearly Linear Time for Dense Instances

Further improvements and applications Using additional techniques.

$\underline{\ell_1}$ -Regression

- $\min_{x \in \mathbb{R}^d} ||Ax b||_1$ for $A \in \mathbb{R}^{n \times d}$
- $\tilde{O}(nd + d^{2.5})$

Markov Decision Process

- S-states A-actions
- $\tilde{O}(S^2A + S^{2.5})$

Maximum Flow

- *m*-edges, *n*-nodes, integer capacities at most *U*
- $\tilde{O}(m + n^{1.5})$

Thank you

Questions?

Aaron Sidford

Contact Info:

- email: sidford@stanford.edu
- website: www.aaronsidford.com