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        Optimization tools in the Lyapunov 
stability problem



A linear dynamical system  with continuous time: 

A linear dynamical system  with discrete time: 

A  system  is stable if all trajectories tend to zero 

                       (Hurwitz stability)

A  system  is stable if all trajectories tend to zero 

                       (Schur stability)

Stability of linear systems 



                            Positive linear systems. 


          How to find the closest stable/unstable 
system?

Applications

Mathematical economics  (Leontief input-output model) 

Epidemiological dynamics

Population dynamics in mathematical biology

Fluid network control 

Blanchini, Colaneri, Valker   ”Switched positive linear systems”, 2015

Krause, “Swarm dynamics and positive dynamical systems”, 2013
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A linear dynamical system  with discrete time: 

A  system  is Schur stable if

Problems

How to find the closest stable matrix to A ?

How far is A  to the set of stable matrices ?

How to find the closest unstable matrix to A ?

How far is A to the set of unstable matrices ?

This is equivalent to the optimizing of the spectral radius of a matrix over a matrix ball
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Stable matrices

X ∈absmin
X ,X1, X2 , X3 ∈locmin

X1X2
X3

..

F.X. Orbandexivry, Y. Nesterov, and P. Van Dooren, (2013)

C. Mehl, V. Mehrmann, and P. Sharma (2016)

N. Gillis and P. Sharma (2017)

R. Byers  (1988)

J. Anderson (2017)





Optimizing the spectral radius of a matrix
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The nonnegative case:   
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These problems are both notoriously hard 

                 (even if  the set M is convex). 

The spectral radius is neither convex nor concave  in  matrices

The spectral radius is non-Lipschitz, if the leading eigenvalue is multiple. 

Reasons:
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  For the set      [ , ] { , },

                                  

0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0

                                ;      
0 0 0.5 0.1 0 0 0 0.1
0 0 0.1

Example 1. 

0 0 0 0.1 0.5
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The algorithm of  alternating relaxations

           (N.Guglielmi,  V.P., 2018)

Let  A be a non-stable matrix,  ρ(A) > 1. 

1)Take a matrix X0 , ρ(X0 ) = 1, v0 is the right leading eigenvector:  X0v0 = v0

X1  is the solution of the problem    X − A → min

                                                         Xv0 = v0
2)Take  u1 be the left leading eigenvector:  u1X1 = u1

X2  is the solution of the problem    X − A → min

                                                         u1X = u1

Then we alternate left and right leading eigenvectors.  The distance to A  decreases each step.  


Theorem. If the algorithm converges to a positive matrix  X, 

then  X is a global minimum.  In this case the convergence is linear 

and the rate can be estimated from above.  

A

X
.

Stable matrices

X ∈absmin



The curse  of sparsity 

If  the limit matrix  X  have some zero components,   then   

2) If X is reducible, then the we obtain several problems of 
smaller dimensions.  We solve them separately


1)     If X is irreducible, then  X is a local minimum;
 X =
X1 ∗

0 X2

⎛

⎝
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⎞

⎠
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Theorem. If the algorithm always converges to a local minimum with a linear rate.  

Example.



Y.Nesterov,  V.P  (2018)

Trying another norm ? 

1



The row uncertainty sets  of matrices 

Definition 1.  A family of matrices is  called a product family, if the rows of matrices are 
chosen independently from  given sets (uncertainty sets)  Fi,       i   =  1, …,  d. 

* * *
A  =  * * *  

* * *

⎛ ⎞
⎜ ⎟
⎜ ⎟
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⎝ ⎠

(0.5 , 0.2 , 0.2)

(0.4 , 0.3 , 0.2)
(0.6 , 0.1 , 0.2)
(0.55 , 0.25 , 0.15)

A family of 3x3-matrices. The uncertaintyExample 2.  sets  are 

(0, 2,1)

(1, 5, 0)

(0.4, 0.1, 2)

We obtain the family M of 4x1x2  = 8 matrices

1F

2F

3F



     The exhaustion is hard! 

50 15
If we have  50   and  just  TWO  lines in each uncertainty set, 

then the  total number of matrices  is  2 10 .
d =

>

  

Moreover,  the set of rows may be polyhedral 
(a subset of  defined by a system of linear  inequalities).dR



Product  families  with row uncertainties

V.Kozyakin  (2004)

V.Blondel, Y.Nesterov (2009)

Y.Nesterov,  V.P.  (2013) 

Applications:

Leontief model  (mathematical economics)

Combinatorics

Spectral graph theory

Asyncronouos systems 



Optimizing the spectral radius over product  families

Studied in:   Y.Nesterov,  V.P.  (2013),  V.P. (2015),  Cvetkovic (2019), 

M.Akian, S.Gaubert, J.Grand-Clément, and J.Guillaud (2017)

The  spectral simplex method 

Definition 2.  A  one-line correction, of  a matrix is  a  replacement  of  one of its lines. 
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The  spectral simplex method 

1Take an arbitrary matrix  .  

We have a matrix  and its leading eigenvector  0.   
            
                   For every  

Initialization.    
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1,...,   do: 
   

in loop.  

      
    

 Step
  

  

k k

A M

A v

i d

i

∈

>

=

1

 Find

'   ,    then set    and go to the step  1. 
   

.    

              
                   

'

 

arg max  (  ,  ).  

 (v

           If   

Otherwise,
  

                      ,      we have   

i i

i i k

i i
b

k

F

a a A A i

a v b

+

∈

= = +

=

                                     Make the one-line correction in the th line.
                                     Theorem 3 implies that

' )  >  (v, ).   

( ' )     
             

  ( )
  

.
    

i i

k k

a a

A A
i

ρ ρ>

1

1 1

1                  Put   ' .  We have    
                                     Compute the leading eigenvector  0  of  .  

                  

( )    ( ).

                   Go to step

k kk

k k

kA A
v A

A Aρ ρ++

+ +>

>=

  1. 
 
If the th step is over, then EN .  D  

i

d

=



For strictly positive matrices, the spectral simplex method 
is well-defined, does not cycle, and finds the solution within finite
Theorem 

 time. 
 3. 

    



For  matrices, the spectral simplex method 
is well-defined, does not cycle, and finds the solut
Theorem 3. strictly po

ion within finite tim
siti

e. 
 e v

    
In many problems, the matrices are sparse.  In this case we are in trouble.  

The leading eigenvector  v  of  a matrix  A  may not be unique.  

The spectral radius is not strictly increasing with iteration, 

but just non-decreasing

The  algorithm may cycle.

For sparse matrices,  the algorithm cycles very often.



Assume a nonnegative matrix A has a simple leading eigenvector 0, || || 1. 
Then after an arbitrary one-line correction such tha
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1If the initial matrix  of the spectral simplex method has a simple leading eigenvector, 

then all matrices in all iterations possess the same property, and the algorithm d
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1How to choose   to possess a unique leading eigenvector ?  A

1For instance to take the th  row of   to be the arithmetic mean 
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k A
F k d=

11 12 13

21 22 23

31 32 33

a a a
A a a a

a a a

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

11 12

21 22 23

31 3

13

32 3

' ' '
'A a a a

a a

a a

a

a⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

1 11 12 13 1 1such that   ' ( ' , ' , ' )  ( ,  ' )    ( ,  ). a a a a v a v a= >



The numerical efficiency of the spectral simplex method

100

For 100,   2,  we have  the 100-dimensional Boolean cube. 

The number of vertices is  2 .   However, the algorithm performs only 56  one-line corrections.

d n= =

t  = 12 s.

10 20For 10,   100,  the set M contains 100 =10  matrices. The algorithm performs 23 iterations.d n= =

t  = 0.3 s.
200For 100,   100,  the set M contains 10  matrices. The algorithm performs 213 iterations.d n= =

t  = 40 s.
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For a product family M of strictly positive matrices, 
there are constants  0,   (0,1) ,  such that 
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of the spectral simpex method. 
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What happens if we optimize not one row but all rows simultaneously? 

For small dimensions (d=2,3) we got worse results (3-4 iterations). 

We have arguments for that. 

!"#$%&'()*"+&,-./0()1"+/&'2345é6.'0()&'2)1"+,%55&,2()78.)9:./&09/)&::/9&;8)09).'0/9:<)=&6.>)?@ABCD

The greedy algorithm converges with a fantastic rate! 

    Bless  of  dimensionality ? 



Theorem (Cvetkovic, V.P., 2018)   The greedy algorithm has a quadratic rate 

of convergence, provided all the uncertainty sets are strictly positive.

The  cycling phenomenon  
Example

Xk+1 − X ≤ B Xk − X
2

B ≤ C R
2r ρ (X ) ,    where R and r  are maximal and minimal 

curvature radii of two-dimensional cross-sections of  ∂Fi



Anti-cycling modification. The selective greedy method

Def . The selected leading eigenvector of a matric X  is the limit of eigenvectors 
of matrices  X + I + εE as  ε → +0,  where I is the identity matrix and E is the matrix of ones. 

Theorem 1.  The selective greedy method does not cycle.  

Theorem 2. The selected leading eigenvector is the limit of the power method   

xk+1 = Axk with the initial  vector of ones  x =  e =  (1,...,1)T .





The classical simplex method  (for linear programming, G.Dantzig, 1947).

( , ) max
   

( , ) , 1,...
LP problem:     

,i i

c x
a x b i N

→⎧
⎨ ≤ =⎩

Step-by-step increasing of the objective function   ( , )
going  along the edges of the polyhedron  
                             { ( , )  ,    1,  ...,  }. i i

c x

G a x b i N= ≤ =

In practice, converges extremely fast. 

G.Dantzig  believed that the number of steps is linear in  N and d. 

V.Klee and G.Minty constructed an example  w1 ith  2  iterations.972. N

In average, the number of iteration is indeed  linear in N and d  (S.Smale,  1983). 

What is the theoretical complexity of the  (greedy)  Spectral simplex method ? 



       The Maximal Acyclic Subgraph problem (MAS) 

Let  G = (V ,E) be a given directed graph. 
Find its acyclic subgraph  G ' = (V ,E ') for which  |E '|→ max

Answer:   max  |E '|   =  5

2

1

3



1

2

3

4

5

The simplest method:   make some ordering  of vertices,
then take those edges E '  directed in the increasing order 
(or decreasing).  Then G ' = (V ,E ') is acyclic. 

We have |E'| = 3



1

2

3

4

5

For the decreasing edges |E'| = 4



At least one of these two sets of edges contains ≥  
1
2

| E | edges.

Therefore,  this  simple method gives an approximate answer  with factor ≥  
1
2

This is still the best approximation obtained by a polynomial algorithm. 

No polynomial algorithm is known with approximation factor 
1
2
+ ε

Finding  an acycling subgraph  

with  ≥  
65
66

+ ε
⎛

⎝⎜
⎞
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max | E ' |   is NP hard  

There are algorithms that give with approximation factor 
1
2
+ ε

for  the vast majority of graphs. 

Finding  max |E'|  is NP complete 

The MAS problem is in the list of 21 NP-complete problems by R.Karp (1973)



Observation: A graph is acyclic  ⇔    ρ(A) = 0

A =

0 0 1 0 0
1 0 0 1 0
0 1 0 1 0
0 0 0 0 1
0 1 0 0 0

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟



X is the MAS,  if and only if  X is the sulution of the problem 

                             A− X
2
→ min

                               ρ(X ) = 0

This problem is closely related to the stabilising problem
for positive dynamical systems:   

                              A− X
2
→ min

                               ρ(X ) = 1



Approximate solution of MAS by the greedy method



Discrete switching systems

Theorem (N.Barabanov, 1988)    A discrete system is stable if and only if 

 its joint spectral radius is smaller than one. 

(The  Schur stability) 
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The Joint spectral radius (JSR)

J.C.Rota, G.Strang (1960)  -- Normed algebras

  I.Daubechies, J.Lagarias ,        
C.Heil,  D.Strang,  … (1991)


                 Wavelets

C.Micchelli, H.Prautzch,  W.Dahmen, 

A.Levin, N.Dyn, P.Oswald,…… (1989)  


      Subdivision algorithms

N.Barabanov, V.Kozyakin,

E.Pyatnitsky, V.Opoytsev, 

L.Gurvits, …(1988)


   Linear switching systems



d
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The geometric sense:

ˆ 1 there exists a norm  in 

such that 1   for all     1,  ... ,  

d

iA i m

ρ < •
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⇔ g fR

Taking the unit ball in that norm:

G2A G

1A G

The Joint spectral radius (JSR)

1

1

If all the matrices  ,...,   are symmetric, then 

one can take    a Euclidean ball    

  

ˆ max {

Example.

( ) ,..., ( )} 
m

m

A A
G A Aρ = ρ ρ⇒

JSR  is the measure of simultaneous contractibility 



Other applications of the Joint Spectral Radius

Combinatorics

Probability

Number theory

Mathematical  economics

Discrete math



How to compute or estimate ?

Blondel, Tsitsiklis (1997-2000).     


The problem of JSR computing for  nonnegative rational matrices in NP-hard


The problem, whether JSR is less than 1 (for rational matrices)  is algorithmically

undecidable  whenever  d > 46.


There is no polynomial-time algorithm, with respect to both the dimension d and the accuracy
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Once we are not able to find an extremal norm, 

we find the best possible one in a class of norms.  

1

min
subject to:

0

0 ,
k

k

T
k d d

r

X
A X A r X A A A

→

∃

− =

!

! !

1/ 1/(2 ) 1/(2 )ˆFor any   we have        Theorem.  k k k
k kk d r rρ− ≤ ≤

We take all possible norms of the form  u ( , ),  where   is a positive definite matrix.Xu u X=

``The best ellipsoidal norm''   

Ando,  Shih (1998),  

the sBlond emideel, Nester finete proov, Theys gramming f(2004), rame work

thP. e , Ju coningers, B c progralondel (2010),  mming framework



(P. (1997),  Zhow ``Tensor products (1998), Blondel, Nof matric esterov (es'' 20   05))

Approximates the extremal norm by even polynomials 
Fast, but very rough

``Sum of squares algorithm''  (Parrilo, Jadbabaie ( 2008))

Approximates the extremal norm by some of squares polynomials.
More or less the same complexity as the previous method. 
 



Sometimes easier to prove more


 George Polya   «Mathematics and Plausible Reasoning»  (1954)

                                                                                                         

     When trying to compute something approximately, often a good strategy is to…

 
     find it precisely. 

When trying to prove something, often a good strategy is to try to prove more.



N.Guglielmi, V.Protasov (2013)



Invariant Lyapunov function  (norm)

Theorem. (N.Guglielmi, V.P., 2016)  


The invariant polytope algorithm terminates within finite time  if and only if 

the family has a finite number of dominant products 

Theorem. F.Wirth (2008),  N.Guglielmi, M.Zennaro (2019)  


If  P  is an invariant polytope for  the family of transposed matrices, then 

the polar  P*  is  the unit ball of the invariant Lyapunov norm  f(x). 



Invariant polytope  P The unit ball  P* of the 

invariant Lyapunov norm



The complex case.  The invariant elliptic polytope  P



Thank you! 


