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Federated Learning context



What is Federated Learning?

e Actors collaborate to learn a model

e Data privacy

e Communication constraints

e Each client has a different data distribution

Server

b
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0erRd T
User 1 ﬁ ° ° ° User b ;
Local data m Local data ﬁ
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Data privacy
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Why do we use Federated Learning?

e Communication constraints



Why do we use Federated Learning?

e Communication constraints

MODEL S1ZE Topr-1 Accuracy  Topr-5 ACCURACY  DEPTH
XCEPTION 88 MB 0.790 0.945 126
INCEPTIONV 3 92 MB 0.779 0.937 159
RESNET50 98 MB 0.749 0.921 -
RESNET152 232 MB 0.766 0.931 -
MOBILENET 16 MB 0.704 0.895 88
|VGG16 528 MB | 0.713 0.901 23
VGG19 549 MB 0.713 0.900 26

Table 1: Keras Webpage


https://keras.io/api/applications/

Why do we use Federated Learning?

e Communication constraints
e Data ownership

e Learn from each client dataset



Why do we use Federated Learning?

e Communication constraints
e Data ownership

e Learn from each client dataset
What is the difference with distributed learning?

e Non-1ID data
e Unbalanced data: unequal amount of data on each node
e Massively distributed data

e limited communication



| QSGD

Method FedAvg
Article McMahan et al. (2017) | Alistarh et al. (2017)
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Figure 1: Karimireddy et al. (2020)



Method FedAvg | QSGD

Article McMahan et al. (2017) | Alistarh et al. (2017)
Num local iter N* 1
Compression No Yes

Algorithm 1: QSGD

Initialize 6, € RY
for k =0to K — 1 do
// In parallel on the b clients

for ie {1,...,b} do
Send ¢ (V/@())
// On the central server
Set i1 = O — v 20, € (VUI(0R))
Output: Ok




Compression operator.

[V Ux]
V/U,' = — — %(ﬁ,)
— N——
[V U] d bits
32d bits

Assumptions.
E[?(x)] = x
Jw > 0,Vx € RY,
E [[€(x) = x|I*] < wllx|?



An example of unbiased compressor.

cg(S)(V) = ||v|| - sign(v) - &s(v)
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QSGD result.
o U = Zszl U; ; strongly-convex ~ 0, = argmin 32, U,
o VU (9') = VU(0)]| < LIl6" - 0]
o 0.2 = Y0 E [IVU0.) - VU6,
o B =TLIVUE.)I

Convergence result:

E |0k — 6.]%] < (1 —~vp)* (160 — 64| +2C+*8%)

+ 2% (w+1)0.2 + wB?)



What is a memory term?

e Mishchenko et al. (2019) introduces the “memory term”
e Decreases the bias when the datasets are heterogeneous
e Mechanism to learn VU;(6,) # 0

In practice. Update the memory term at each iteration
e On the clients _
Send ¢ (v U (6x) — n(k'))
7 =1 + a% (VU,-(Gk) - ni')>

e On the central server
b

Update 01 =0k =y ) € (VU,-(ek) - 779) + Y1k
i=1

b
Nk+1 = Nk + ZC@O (VUi(ek) - 712.))

i=1



What is a memory term?

e Mishchenko et al. (2019) introduces the “memory term”
e Decreases the bias when the datasets are heterogeneous
e Mechanism to learn VU,;(6,) # 0

Convergence results:

Client nk —>VU( +)
Server n — VU(0,) = Z, . VU;(6,)




What is a memory term?

e Mishchenko et al. (2019) introduces the “memory term”
e Decreases the bias when the datasets are heterogeneous

e Mechanism to learn VU;(6,) # 0
How it works?

e Each device has its own memory term nfj) € R

e Since E [||£'(x) — x|[?] < w||x|> = we want to transfert ||x|| <1
to accelerate convergence

e Transfert & Vm) - nl((i) instead of & Vm)
—_——— ——

tends to zero #0 due to heterogeneity



QSGD with memory term.
o U = Zszl U; j strongly-convex ~» 6, = arg min Z?:l U
o [[VU;(0') = VU,;(O) < L|l6" -]
o 0.2 = L E[IVT6.) - VU
o B2 =X VU@

Convergence result:

E [10k — 0.117] < (1 —~vu)* (160 — 6.1 +2C~283?)

2
+%(w+1) o2 +4 o°C

replace 32



Objectives:

e Sample parameters (0x)ken in large dimension
b

O ~7(- | D)=2Z"- H(fU"(')
i=1
e Obtain estimators from the sampled points

Example:

e O can be a neural network parameter

Ui0) = Y Ufalx

(x,y)€D;

e (MAP) in optimization
0, = argmin U = argmaxn(- | D)

10



But what can | do with those samples?

Instead of having one sample we have a family of samples

e Compute expectation 7 : RY — R based on the samples
00) coog 0K—1

Egr(10)[T(0)] =~

11



But what can | do with those samples?

Instead of having one sample we have a family of samples

e Compute expectation 7 : RY — R based on the samples
00’ coog 0K—1

Egr(10)[T(0)] =~

e Compute predictive distribution on a new test example

(y|x, D) :/W(y|x,9)ﬁ(()\/D)d9
~— 0 S~
predictive distribution likelihood posterior

1 Kol
= > wlylx, i)
k=0

11



Quantized Langevin stochastic
dynamic




e Langevin dynamic.

b
dde = = VU(9:)dt + V2dB;
i=1

12



e Langevin dynamic.

b
dde = = VU(9:)dt + V2dB;
i=1

e |nvariant distribution.
10 e” 2 U@, [ e S U0 g
R
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e Langevin dynamic.

b
dde = = VU(9:)dt + V2dB;
i=1

e |nvariant distribution.

10 e” 2 U@, [ e S U0 g
Rd
e Discretization. Euler-Maruyama —

b
Vke{0, T =1}, 61 =0c—7 ) VUi(6k) + V27 Zii1
i=1

12



. example: |Dj| = N and VU j(0k) = Val(fo, (%), ¥j)

Server

o o

VU (0) = ZVU1, (0%) YV Us(6)) ZVUb,, (6x)

&

— Computational cost?

13



e | LSD” | + Stochastic gradient/mini-batch

— Computational cost?

— Communication constraint?

13



o + Stochastic gradient/mini-batch

— Computational cost?

e | 1LSD¥ | + Stochastic gradient/mini-batch + Compression

< Communication constraint?

@

13



o + Stochastic gradient/mini-batch

— Computational cost?

o + Stochastic gradient/mini-batch + Compression

< Communication constraint?

Server

(| S| ZVU11(91<)) <| 57 > VUs, (k)

jeSst JjESP



QLSD# = | Quantized Langevin Stochastic Dynamics ‘#

b
N
Ok =0k =7 € 51} D VU0 | +v/27Zikn
i=1 kl icci
JES;
e Computational cost

e Communication constraint

® 0o~ p
o Markov kernel Qu ~(0,A) =P (0k11 € A| b =0)

O ~ ”Q;éﬁ

14



Algorithm 1: QLSD#

Initialize 6y € RY
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Algorithm 1: QLSD#

Initialize 6 € RY
for k=0to K—1do
for i € {1,...,b} // In parallel on the b clients do

Set g,; =& (|5’\ Zjesli VU,‘J(@k))

Send g,i to the server
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Algorithm 1: QLSD*

Initialize 6y € RY
for k=0to K —1do
for i € {1,...,b} // In parallel on the b clients do
i _ o N
Set g,‘( =% (@ Zjes;; VU,‘J(@/())

Send g,i to the server
// On the central server

Ok+1 =0k —~ Zf‘lfl gl£+\/ 2vZk41 ‘
Output: (Gk)kKZO

Set

15



Algorithm 1: QLSD*

Initialize 0y € RY
for k=0to K—1do
for i € {1,...,b} // In parallel on the b clients do

Set g;; =% (% ZjES"; VU,‘J(Q;J)

Send g,i to the server
// On the central server

Set Okr1 = Ok — v S0y 81 +V2VZk41
Output: (0)K_,

Algorithm 2: QSGD

Initialize 6y € RY
for k=0to K—1do
for i€ {1,...,b} do
i N
Set 8 = € (@ ZjeSL VU,‘J(G;J)

Set 01 = 0k — 72?:1 gl
Output: Ok

15



Assumptions.

e The potential U is m-strongly convex, L-Lipschitz

e The compression € is unbiased and E||¢'(x) — x||* < w/|x]|?

e There exists M > 0,
[VU;j(62) — VU, j(61) |1 < M(VU;(62) — VU ;(61), 62 — 61)

16



Assumptions.

e The potential U is m-strongly convex, L-Lipschitz
e The compression € is unbiased and E||¢'(x) — x||* < w/|x]|?
e There exists M > 0,
IV U:j(62) = VU j(01) | < M(VU;;(62) — VU;(61), 02 — 61)
Then.

« 37> 0, ¥y <7 3A#, BF >0
o Vu € P (RY)

Distance between
the initialization
and the target

2 k k 2
W (pQf ) < (1—m/2)" W5 (u, )

Contraction term

+yBY +2AR(L - m/z)k—lk/ 10— 0, 21(d0)
Rd

16



Assumptions.

e The potential U is m-strongly convex, L-Lipschitz
e The compression % is unbiased and E||4’(x) — x||? < w]|x||?
e There exists M > 0,
IV U;j(62) = VU;i(01)]> < M(VU;j(82) — VU (61),62 — 61)
Then.
* 35>0,Vy <7 3A¥,B¥ >0
o Vu € P2 (RY)

Heterogeneity
+ Discretization error

W2 (1@, m) < (1—m/2*WZ (u,m)+  4BF

+ A% (1 — my/2) Tk /R 16 — 6, [*1(d6)

16



Assumptions.

e The potential U is m-strongly convex, L-Lipschitz
e The compression € is unbiased and E||¢'(x) — x||* < w/|x]|?

e There exists M > 0,
[V Ui j(02) — VU, j(61)|]> <M (VUi ;(02) — VU, j(61),0> — 61)

Then.

e 357>0,Vy <7 3A¥,B¥ >0
° VMGPQ(Rd)

WZ (1Qf ) < (1 — ym/2) W () + vBZ

+ AL = my/2) K [0~ 6. Pu(as)
' JRd

Mini-batch 4+ Compression

16



Sketch of proof.

e Based on couplings

Initialization
k-th iteration

QON/J
Ok ~ QX

Vg ~ T

Vigy ~ T

e Update
dv; = —VU(v;)dt + v/2dB;
Ok1 = 0k =7 0 % (TU(0)) + VE(By sy — Boi)

17



Sketch of proof.

e Based on couplings

Initialization
k-th iteration

QQN/J
Ok ~ QX

Vg ~ T

Vigry ~ T

e Update
dv; = —VU(v;)dt + v/2dB;
Ok1 = 0k =7 0 % (TU(0)) + VE(By sy — Boi)

e Main idea ~~ to find a contraction

E7* [lvy k1) — Ous1llP] < Allviey = Oicll® + v*Bll0k — 6] +~>C

— D Wiy — 01, VU(viy) = VU(6))

e Wasserstein distance ~ infimum over couplings between (uQ’f,w)
W (uQY, ) < E [[lvx — 0c])?]

17



Drawback.

e When v oc N7t

liminfyB#* >0
Pl

18



Drawback.

e When v oc N7t
o 3
I}\IrTngofﬂ/BV >0

Solution: Variance-reduction scheme.

e Fixed-point approach based on the minimizer 6, = arg min U
(Brosse et al., 2018; Baker et al,, 2019).

VU( < Z{VU,, —VUi,(6.)}
‘ il J€S;
e Biased operator

E[VUi(6)]= VUi(8) — VU;(6,) # VU;(0)

e QLSD*:

b
9k+1:9k—72%’ Z{VU,J(G —VUj(0)} | +v27Zkss

i=1 15 ‘JES

18



Algorithm 3: QLSD*

Initialize 6y € RY

19



Algorithm 3: QLSD*

Initialize 6y € RY
for k=0to K —1 do
for i € {1,...,b} // In parallel on the b clients do

Set g = & (3] Ljes, {V U0V Uis(6.)})

Send g| to the server
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Algorithm 3: QLSD*

Initialize 0y € RY
for k=0to K—1do

for

Set

i€{l,...,b} // In parallel on the b clients do
Set g, =€ (% 2jes; {VUi-,j(ek)*vU/J(U*)D
Send gj to the server

// On the central server

Oky1 = 0k — 72?:1 8i+vV27Zi4a

Output: (0x)K_,
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Algorithm 3: QLSD*

Initialize 0y € RY
for k=0to K—1do
for i € {1,...,b} // In parallel on the b clients do

i N
Setgj =¢ (@ Zjes; {VU; ;j(6x)—V U ;(0s )})
Send g,i to the server
// On the central server
Set Oip1 =0k — v 0, & +V2vZk41
Output: (0)K_,

Algorithm 4: QLSD?

Initialize 0y € R4
for k=0to K—1do
for i € {1,...,b} // In parallel on the b clients do
i N
Set g,’( =% (@ Zjes;; VU,‘J(@/())
Send g,i to the server
// On the central server
Set Okr1 = Ok — ¥ X0y 84 +V2VZkr1
Output: (6)K

19



Assumptions.

e The potential U is m-strongly convex, L-Lipschitz
e The compression € is unbiased and E||¢'(x) — x||* < w/|x]|?

e There exists M > 0,
[VU;j(62) — VU, j(61) |1 < M(VU;(62) — VU ;(61), 62 — 61)
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Assumptions.

e The potential U is m-strongly convex, L-Lipschitz
e The compression € is unbiased and E||¢'(x) — x||* < w/|x]|?
e There exists M > 0,
IV U:j(62) = VU j(01) | < M(VU;;(62) — VU;(61), 02 — 61)
Then.

« 37>0 ¥y <7 34, B >0
o Vu € P (RY)

Distance between
the initialization
and the target

2 k k 2
W5 (nQy ., m) < (1—m/2)" W5 (p,7) +B;

Contraction term

AL —m/2) k[ 10 0.](a0)
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Assumptions.

e The potential U is m-strongly convex, L-Lipschitz

e The compression € is unbiased and E||¢'(x) — x||* < w/||x||?

e There exists M > 0,
[VU;j(02) — VU, j(61)I1> < H({VU;(62) — VU, ;(61),0> — 61)

Then.

¢ 37>0,Vy <7, 3A%,B: >0
o Vu € P (RY)
Discretization error

+ Mini-batch
+ Compression

=
W2 (1Qs 5 m) < (1 —m/2)" - Wi (w,m) + 9B

A=/ [ 16— 6. Pu(a0)

20



Assumptions.

e The potential U is m-strongly convex, L-Lipschitz
e The compression € is unbiased and E||¢'(x) — x||* < w/||x]|?

e There exists M > 0,
[V Ui j(02) — VU, j(01) 1> < (VUi (02) — VU, j(61), 0> — 01)

Then.

e 3y >0, Vy <7, 3A5,B) >0
° VNGPQ(Rd)

W3 (nQf . m) < (1—m/2)* W5 (p,m) +vBF

2 AT (1—my/2)F / 16 — 6, |2(d6)
—~— RY

Compression

20



For non-iid data in Dy,...,Dy
e liminfy_ o 'yB# > 0 when the stepsize v N1 =0
e limy_oo 'yB;* =0whenyx N1 =0

e BJ independant of the heterogeneity !

@

21



For non-iid data in Dy,...,Dy
e liminfy_ o 'yB# > 0 when the stepsize v N1 =0
e limy_oo 'yB;* =0whenyx N1 =0

e BJ independant of the heterogeneity !

Drawback.

e Difficult estimation of 6,, especially in a FL context

@
@
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For non-iid data in Dy,..., Dy
o liminfy_,oo 7B > 0 when the stepsize v oc N — 0
o limy_oo fyB; = 0 when v x N1 =0 ,
e BY independant of the heterogeneity ! @

Drawback.

e Difficult estimation of 6,, especially in a FL context

DD

Solution: Variance-reduction scheme without 0, .

e SVRG: variance reduction (Johnson and Zhang, 2013) (14

e Memory Term: heterogeneity (Horvéth et al., 2019;
Dieuleveut et al., 2020)

e QLSDHT:

gl’;: :g; Z{VU,J 9;() leJ(Ck)}"'hk 77k

Compression | k | Jj€S]

21



For non-iid data in Dy,..., Dy
o liminfy_.o yB#¥ > 0 when the stepsize y oc N1 — 0
o limy_ oo 7B} =0 when v N1 -0

e B independant of the heterogeneity !

Drawback.

e Difficult estimation of 0, especially in a FL context

Solution: Variance-reduction scheme without 6,.

e SVRG: variance reduction (Johnson and Zhang, 2013)

e Memory Term: heterogeneity (Horvath et al., 2019;
Dieuleveut et al., 2020)

@

oD

—

e QLSDtT:
i N - i
gi=%| |z > VULB)-VU, () ¢ +h
|5k| = —— ~—~
JES; Control Variate ) Control Variate

21



For non-iid data in Dy,..., Dy
o liminfy_.o yB#¥ > 0 when the stepsize y oc N1 — 0
o limy_ oo 7B} =0 when v N1 -0 )
e B independant of the heterogeneity ! @

Drawback.

e Difficult estimation of 0, especially in a FL context

oD

Solution: Variance-reduction scheme without 6,.

e SVRG: variance reduction (Johnson and Zhang, 2013) (44

e Memory Term: heterogeneity (Horvath et al., 2019;
Dieuleveut et al., 2020)

e QLSDtT:

gl =%¢ Z{VU,J 0k)—V Uii(C)} +hi —77k

|Sil
x eS’ Memoryterm

21



Algorithm 5: QLSD**

Initialize 6y € RY

22



Algorithm 5: QLSD**

Initialize 0y € RY

for k=0to K—1do

Store

else

if k= 0[mod /] then

for i € {1,...,b} // In parallel on the b clients do

b=, VUi j(Ck)

[ sufa=ta

22



Algorithm 5: QLSD™"

Initialize 0y € RY

for k=0to K—1 do

if k =0[mod/] then
Set (x = 0Ok
for i € {1,...,b} // In parallel on the b clients do
| Store b = >, VU; j(Ck)

else
| Set Cx = (k-1
for i € {1,...,b} // In parallel on the b clients do
Set| g, =¢ (LTI\Q Yjesi {VUij(0k) = VUi (¢} + hi*ﬂi])

Send g,i to the server

Update nLJrl = 17;; + ag/;

22



Algorithm 5: QLSD™ "

Initialize 6 € RY

for k=0to K—1do

if k =0[mod/] then

Set (x = 0Ok

for i € {1,...,b} // In parallel on the b clients do
| Store hi ==, VU; ;(¢)

else

| Set (k= (k-1

for i € {1,...,b} // In parallel on the b clients do

Set g, = (L?’L jes; {VUj(06) = VUi;(C)} + hi—’?iD
Send g,i to the server

Update ’7;'<+1 = 77,’; + oag,i
// On the central server

ka1 = Ok — v 01 gh =k + V27 Zkt1 ‘

Set

Update | i1 = 1 + Y7y 8]
Output: (Gk)kK:O




Assumptions.

e The potential U is m-strongly convex, L-Lipschitz
e The compression € is unbiased and E||¢'(x) — x||* < w/|x||?
e There exists M > 0,

IV U:(62) = VU j(01) | < M(VU;;(62) — VU;(61), 02 — 61)

Then.

e 37>0,Vy <7, 3A%,BY >0
o Va < 1/(1+w),Vu € P, (RY)

Distance between
the initialization
and the target

2(, Ok kK 2
W5 (pQg -, m) < (1—ym/2)" Wy (p,7) +

Contraction term

82

(1 — ym/2)*/*A®

4w’7 i dy
+ Z IVUi(6.) =61 + 7 B7

23



Assumptions.

e The potential U is m-strongly convex, L-Lipschitz
e The compression € is unbiased and E||¢'(x) — x||* < w/|x]|?
e There exists M > 0,
[VU;j(02) — VU, j(61)I1> < H(VU;(62) — VU, ;(61),0> — 61)
Then.
e 33>0,Vy <7, 3AY,BY >0
o Va < 1/(1+w),Vu € P, (RY)

Mini-batch
+ Compression

2 k ka2 g ke ®
WE(uQk ) < (1= ym/2) WE (s, m) + 1(1 = ym/2)/* "G

d 4w
+ 5B+ (1 vau 6.) — n$|P

23



Assumptions.

e The potential U is m-strongly convex, L-Lipschitz

e The compression % is unbiased and E||4'(x) — x||? < w]|x||?

e There exists M > 0,
[VU;j(02) — VU, j(61)I1> < H(VU;;(62) — VU, ;(61),0> — 61)

Then.

e 33 >0,Vy <7, 3AT,B9 >0
o Vo <1/(1+w),Vu € P, (RY)
ol
W (1@ o m) < (1= m/2) Wi (. m) + —(1 — ym/2)“/* AT

d"y 4ary ()2
— BY
B §j||vu |

Residue



Assumptions.

e The potential U is m-strongly convex, L-Lipschitz

e The compression € is unbiased and E||¢'(x) — x||* < w/|x]|?

e There exists M > 0,
[VU;j(02) — VU, j(61) I < H(VU;(62) — VU, ;(61),0> — 61)

Then.

e 33 >0,Vy <7, 3AY,BY >0
o Va <1/(1+w),Vu € P, (RY)

W2(uQk ) < (1= ym/2) W2 (s, m) + 2 (1 — m/2)/ A2

b
d 4w ;
+ S5 BY + (1) [VU(©.) - |2

Memory initialization

23



To summarize.

e | 1| We proposed QLSD#

° The bias liminfy_.o 'ny > 0 when yoc N™! =0
° = QLSD*: control variates using 6, = arg min U.

° < hard to compute

o = QLSD'": memory term — heterogeneity & control variates —
fixes bias when v oc N1 — 0

24



Numerical experiments




Toy Gaussian example.

) .

T 20 * 0 *

£ ‘ x oliel”

i o

8 10 1 .2*:}' x

o x  x

< x

O 0 elgi

o P ee Vs

2, w0

@ *

D 90l : : : -
20 —10 0 10 2

First PCA coordinate

e number clients = 20, dimension = 50,
e dataset size = 200, mini-batch size = 20

18

12
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MSE for test function f : 6 — |||

MSE for test function f : 6 — |||

10-% 4

1014

)

—— QLSD* 4 bits
—— QLSD* 16 bits
—— QLSD* 4 bits
—— QLSD* 16 bits

=4

10600 20[‘100 30(‘]00 40600 50600
Nb. of communication rounds

'

—— QLSD* 4 bits

—— QLSD* 8 bits

—— QLSD* 16 bits
LSD*

10600 20[‘100 30(‘]00 40600 50600
Nb. of communication rounds

26



Logistic regression.

e number clients = 50, dimension = 2,

e dataset size = 200, mini-batch size = 20

e control variates update ¢ = 100

0.00021
5

-5 0.00020
©

£ 0.00019 4
=

O 0.00018
[

o 0.00017
c

@ 0.00016
=

©

S 0.000154

£ 0.000141

or

£ 0.00013 1
w
0.00012

—— QLSD** 1 bit with memory
—— QLSD** 1 bit

e e
N

0

20000 40000 60000 80000 100000
Nb. of communication rounds

0.00021
5
-5 0.00020
©
£ 0.00019
=
o 0.00018
[
O 0.00017 4

c
@ 0.00016

arl

S 0.000154

n

0.00014 1
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e number clients = 100, dimension = 784,

e dataset size = 600, mini-batch size = 80

e Trained on MNIST
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e Conditional predictive entropy
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Conclusion.

e Introduce 3 algorithms
e Analyse theoretically

e Numerically the compression does not hurt the convergence

Perspective.

e Non-convex potential U
e Biased compression
e Hamiltonian instead of Langevin diffusion

e Several local updates before communicating
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Vector Quantization
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Vector Quantization

Vector Quantization

Let X a random vector in RY
» Discretize (spatially) X i.e. replace X by a r.v. taking finitely
many values close to X in some sense;
» Let g:RY — I C RY be a Borel function, and I a finite
subset of R9(grid). X = q(X) is called a quantization of X.
» Example: if X is [0,1]-valued, one may choose a mid-point
quantization: g(x) = 2=t if &1 <x < K. x € [0,1].

Oslide inspired from G. Pages talk at CIRM, 2017.
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Voronoi Quantization

Voronoi quantization [PP03, PW18], aims at selecting the closest
codeword from Cyy, i.e.:
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Voronoi Quantization

Voronoi quantization [PP03, PW18], aims at selecting the closest
codeword from ,l.e.

Figure: Voronoi quantization for d = 2
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Voronoi Quantization

Voronoi quantization [PP03, PW18], aims at selecting the closest
codeword from

Figure: Voronoi quantization for d =2
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Voronoi Quantization

Voronoi quantization [PP03, PW18], aims at selecting the closest
codeword from

Figure: Voronoi quantization for d = 2
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Voronoi Quantization

Voronoi quantization [PP03, PW18], aims at selecting the closest
codeword from Cy, i.e.:

Figure: Voronoi quantization for d = 2
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Unbiased random scalar quantization

Consider a (scalar) codebook
, and
» Compute the index such that
P> Note that

» Unbiased scalar quantifier:

where

where
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Vector Quantization

Unbiased random scalar quantization

is an unbiased quantization.

0.25 06 075
0 O P 1
—>

P{Q=05]=06 PlQ=075]=04

Figure: lllustration of an unbiased scalar quantization (taken from
[AGLT17b])
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Dual Vector Quantization

> Find weights , ' '
such as: for all , we get

» The Delaunay quantizer minimizes the inertia :
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Vector Quantization

Dual Vector Quantization

2.0 '
s o @
1.0 ‘ 0.8
0.5 + 0.6
e +
0.0 + 04
N
-05 + 02
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-10 004 ® °
15 + 0.00 0.25 050 0.75 1.00 1.25 150 175 2.00
-2 -1 0

Figure: Delaunay quantization for a vector x (orange diamond), for a
given set of codewords (green +), and corresponding weights (area of the
blue spheres). Remark that all but three points have a 0 probability of
being picked, making the quadratic error much smaller than for
HSQ-span.
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Our contributions

» Unbiased Vector Quantization
» High-compression rate
» Small computational overhead

» Theoretical guarantees on distortion and optimality.
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Random VQ
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Random VQ and StoVoQ
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From StoVoQ to DoStoVoQ
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Random VQ and StoVoQ

Why unbiasedness is important

> A compression operator is unbiased if for any :

» A compression operator has a w-bounded relative variance (for
some ), if for all ,
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Random VQ and StoVoQ

Why unbiasedness is important

P /< workers compress independently the same vector

» Unbiasedness

P Independence and bounded relative variance
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Random VQ and StoVoQ

StoVoQ Algorithm

» Voronoi Vector quantization The input vector is
mapped onto its nearest neighbor in a codebook

Figure: Nearest neighbor quantization
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Random VQ and StoVoQ

StoVoQ Algorithm

» Voronoi Vector quantization

» Random codebook. A new codebook is sampled every time a
new quantization operation is performed.

» StoVoQdiffers from classical random VQ which typically uses a
random codebook, but which is sampled once and then kept
fixed.

The codebook, is not transmitted: the transmitter and the receiver
use the same random seed!
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Random VQ and StoVoQ

StoVoQ Algorithm

» Voronoi Vector quantization
» Random codebook.
» Unitary invariant codewords The distribution of the

codewords p is invariant under the unitary group, i.e. for any
unitary matrix, U ( ), and

28/68



Random VQ and StoVoQ

StoVoQ Algorithm

» Voronoi Vector quantization
» Random codebook.
» Unitary invariant codewords

> Bias removal. By relying on unitarily invariant distribution
for the codewords generation, the quantized value of each
vector x € R? is directionnally unbiased. The bias only
depends on the number and distributions of the random of
codewords and on ||x||. This key property allows to derive a
simple way to remove the quantization bias.
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Random VQ and StoVoQ

Key Property : the quantization bias is radial

Lemma

Assume that the codebook distribution is unitarily invariant. Then,
for any nonnegative measurable function f, any , and
Taking , = for any and , it holds that
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Random VQ and StoVoQ

Key Property: the quantization bias is radial

Theorem (Quantization bias)

Assume that the codebook distribution is unitarily invariant. Then,

for all , there exists a function such that for
all ,

In words, the expectation of the quantized vector is
colinear to the vector x, i.e., is directionally unbiased.
Moreover, the radial bias only depends on : and the
distribution
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Bias function

0 1 2 4 5 6

Raéjius
Figure: function r}y, for d = 4 (dashed) and d = 16 (solid), p = N(0, 14)
and M = 21%orange), and M = 2'3(green).
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Regularity Assumptions

1. there exists such that
2. for some , , and (3) is
unimodal, i.e. the super level sets , for

are convex subsets of

Regularity assumptions obviously satisfied if we take
for any
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Distortion of a random codebook

Theorem
Assume that the codebook distribution is (a) unitarily invariant (b)
regular. Define . Then, for

every

’

» Note that hence grows only linearly
with the dimension
» Since
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Random VQ and StoVoQ

Optimal Codebook, Zador's theorem
» For a given pdf g of the input the (quadratic) distortion is
defined as:

We stress that in this case the expectation is taken w.r.t. the
input distribution ¢, the codebook being deterministic in (?7?).

» A Voronoi optimal codebook is a minimizer of the
distortion over the set of codebooks:

» Zador's theorem gives the distortion of the Voronoi optimal
codebook in the limit of :as ,

and is a universal constant satisfying
35/68



Random VQ and StoVoQ

Do we need an optimal codebook ?

» Objective Quantify the loss between random codebook
distributed according to p and the Voronoi optimal codebook
for a given input distribution g when . Define

> If , using the Holder inequality with negative
exponents, it holds that
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Do we need an optimal codebook ?

Theorem
Under the "standard assumptions”,

for some , and
Then,

If the codeword distribution is given by
, then,
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Random VQ and StoVoQ

Take-home message

» The distortion achieved by a random quantizer ,

is rate optimal (with rate )-

» If in addition ¢ is unitarily invariant and unimodal, then a
random codebook distributed according to reaches the
optimal distortion bound, up to universal constants
(depending only on the dimension ).

» Moreover, as , then and the efficiency
gap vanishes.
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Take-home message

» As an illustration, assume that the input distribution is

standard Gaussian and set the codeword
distribution to be where
> If , then
and
» The function has a unique
minimum at for which

showing that
a random codebook sampled from is optimal.
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Random VQ and StoVoQ

Related works

» QSGD: [AGLT17b] compresses each coordinate of the scaled
vector x/||x|| on s+ 1 codewords. QSGD is a scalar quantizer
which requires O(v/d log,(d)) bits in its highest compression
setting (s = 1, only two possible levels for each coordinate).
The vector norm is transmitted with high (full) precision | x|
(16 bits). In deep learning problems, it reduces the
communication cost by a factor of 4 to 7.
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Related works

| 2

» Top-H/Rand H. map the vector to either its H largest
coordinates, or a random subset of cardinality H, rescaled by
d/H to ensure unbiasedness.
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Random VQ and StoVoQ

Related works

> QSGD
» Top-H/Rand H.

» HyperSphere Quantization (HSQ). HSQ was introduced by
[DYZ*19]. Two versions are considered: (1) a - greedy-
Voronoi VQ, which is biased; (2) an unbiased version VQ
(HSQ-span), which uses a minimum-norm decomposition of
x € Span(Cy) the linear subspace generated by the
codewords - this version suffers from a large variance and is
potentially an ill-conditioning. Moreover, the performance of
HSQ-span does not improve with M.
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Random VQ and StoVoQ

Related works
» QSGD
» Top-H/Rand H.
» HyperSphere Quantization (HSQ).

) 3

3

"....‘Q 3

0 1 3 3 ] 2 0 2

Figure: HSQ-Span: weights (size of the blue point) on each of the
codewords of €y when decomposing x (orange diamond) . 43/68



Random VQ and StoVoQ

Related works

» QSGD
» Top-H/Rand H.
» HyperSphere Quantization (HSQ).

x_/\/

28 J

274

Quadratic quantization error
b s

26 28 210 )12 Q14
number of codewords

Figure: HSQ-Span: Distortion as a function of M (log-scale): K =1
(blue) K = 8 (orange). 44 /68



Random VQ and StoVoQ

Related works

» QSGD

» Top-H/Rand H.

» HyperSphere Quantization (HSQ).

» Cross-polytope. [GKMM21] is a simple instance of Dual
Quantization, with a codebook Cp[2d] composed of the 2d
canonical vectors
{ ++de; = +(0,...,0,v/d,0...0),i € [d]} that relies on
the inclusion B(0;1) C B1(0; v/d) = ConvHull(Cp[2d]).
The barycentric decomposition can then easily be computed.
Unfortunately, this method suffers from a large variance, as
the quantization error is lower bounded by v/d — 1, which
means the error has the same quadratic error than the Rand-1
compressor.
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Random VQ and StoVoQ

Related works
» QSGD
» Top-H/Rand H.
» HyperSphere Quantization (HSQ).
» Cross-polytope.

-15 -10 -05 00 05 1.0 15

Figure: The codewords are the vertices of B;(0; v/d). A vector x (orange
diamond) lying on the unit Ball By(0; 1) (red circle) is decomposed with
weights (area of the blue spheres) of codewords on the Ball of radius V/d ,q ¢



Random VQ and StoVoQ

Numerical Comparisons

Table: Distortion for Gaussian inputs, for a fixed budget of 16 bits with

d = 16.
Method Sign [BWAALS]  Top-2 Rand-2  Polytope [GKMM21] HSQ-span [DYZ*10] HSQ-greed [DYZ+19]  Stovoq
# Bits (obj =16) 16 2x8 2x8  logy(2x 16) x 246 log,(21°) + 6 log,(21°) + 6 logy(213) + 3
Unbiased v v v v
K=1 621 (0.02) 840 (0.04) 1028 (0.9) 113.9 (0.6) 146.9 (0.6) 9.03 (0.04) 6.97 (0.02)
K =20 626 (0.02) 876 (0.04) 5.40 (0.04) 5.98 (0.03) 7.58 (0.04) 9.10 (0.04)

47/68



om
DoStoVoQalgorithm
Numerical Exy

DoStoVoQalgorithm
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DoStoVoQalgorithm

DoStoVoQ Algorithm

Algorithm 1: Dostovoq-SGD over T iterations
Input : T nb of steps, (7¢)t>0 LR, 6o, p, M, P ;
Output: (0:):>0
fort=1,...,T do
wo sends 0;—1 and different seeds si ; to each wy;
for k=1,...,K do
Compute local gradient gi,: at 0:_1;

e b,f)t] :
fort=1,...,L (in para//el) do
‘ (it*?, t ks 2) = Stovoq(bj ¢,p,d,P, sk.¢)
end
Send (llgwell, (€1 )eepy) to wo ;
end

Reconstruct (8«,¢)kek ;
Update: 6 = 61 — ve e S Bre s
end
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DoStoVoQ Algorithm

> Splitting and renormalizing gradients. Each worker k split
its gradient into L%J buckets, and apply StoVoQ for each
bucket.
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DoStoVoQalgorithm

DoStoVoQ Algorithm

» Splitting and renormalizing gradients.

» Synchronisation of random sequences of codebooks.
Independent codebooks are used to ensure that the quantizers
remain conditionally independent. Generating new codebook
at each time by initially sharing (different) random seeds.
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DoStoVoQalgorithm

Convergence Results

Consider a Smooth and Strongly Convex function F = Z,}le fr,
with condition number x > 1. We measure the complexity of the
algorithm by the number of iterations t required to obtain a model
0 such that E[F(0:)] — mingp F < €.
» Uncompressed variance reduced distributed
methods [DBLJ14] achieve a complexity of

Or—oo (K log(e™h)) |
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DoStoVoQalgorithm

Convergence Results

Consider a Smooth and Strongly Convex function F = Zle fr,
with condition number x > 1. We measure the complexity of the
algorithm by the number of iterations t required to obtain a model
0 such that E[F(0:)] — mingp F < e.

» Uncompressed variance reduced distributed methods

> Biased compression operators obtain

Or—soo(K(1 + 0) log(e71)) | for compressed GD (independently
of the number of workers);
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DoStoVoQalgorithm

Convergence Results

Consider a Smooth and Strongly Convex function F = Zle fx,
with condition number x > 1. We measure the complexity of the
algorithm by the number of iterations t required to obtain a model
0 such that E[F(0:)] — mingp F < €.
» Uncompressed variance reduced distributed methods
» Biased compression operators
» The result of VR-DIANA [HKM™19], which provides a
complexity of | Ox—soo (K (1 +wpr/K)log(e™t)) | applies to
Dostovog-VR-DIANA.
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Numerical Experiments
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Numerical Experiments

Least Squares Regression

We consider a least-squares
problem with n = 2% samples, a
bucket size d = 16, D = 2°, and
1004 K = 32 workers; each worker has
access to a subset m = 211
samples (picked with

10?4

log(excess train loss)

[ 2 a 6 8 10

Number o erations replacement) to introduce a
Figure: Comparison between GD dependency in the data used by
(blue), HSQ-greed (orange) and the workers.

Dostovoq (green), on a LSR
problem in dimension D = 2°.
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Numerical Experiments

CIFAR10 and Imagenet

Table: Average accuracy over 5 experiments, after 100 epochs on

CIFAR-10.
Algorithm SGD QSGD QSGD QSGD HSQ HSQ Dos. Dos.
2 bits 4 bits 8bits d=16 d=8 d=16 d=38
Raw bits per bucket 32d Vd log(d) log(d)
Effective Compression factor 1 ~ 13 ~8 ~4 34 17 38 20
K =1 worker 919 917 92.1 91.9 92.0 92.0 92.0 92.1
K = 8 worker 92.0 918 91.8 92.0 91.8 92.0 91.8 92.1

Imagenet: A ResNet here obtains 69.9%, and with a compression
factor of 8, the performance drops by 2.5%. Using d = 16, we
reach a compression factor of 38, while the Top-1 accuracy drops
by only 4.8%: this is a substantially higher compression rate than
the concurrent work QSGD on the ImageNet dataset.
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Numerical Experiments

Detailed Distortion

Q(x) = Q)(x) + QL(x), where @Qy(x) = l|x]|~2xx T Q(x) is the

colinear distortion, and Q (x) the orthogonal one.

Table: Distortion for Gaussian inputs

Method Sign Top-2 Rand-2 Polytope

Variant norm-quant.
K=1 1.0 || 5.4 48| 3.9 12 || 98 5.8 || 115 5.8 | 115

K =20 10| 54 471 3.8 06148 03]56 03] 5.6
Method  HSQ-span  HSQ-greed StovoQ

Variant  norm-quant. norm-quant. GRVQ Unbiased  Unbiased+quant.
K=1 3.8 | 143 13178 18| 5.0 05/ 105 0.5 || 10.5
K=20 02| 7.0 13175 1.7 ] 0.25
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Numerical Experiments

Histogram of gradients
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Figure: Histograms of the VGG16 gradient buckets (blue), of Gaussian
vectors (orange), and the radial bias for the associated dimension d = 16

(green).
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Numerical Experiments

Influence of correlation between workers

DoStoVoQ distortion
° °
Y ©

)
IS

010 015 020 025 030 035 040 045
Average correlation

Figure: Distortion wrt correlation between gradients of K = 8 different
workers.
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Conclusion

Conclusion

62/68



Conclusion

Conclusion

63/68



Conclusion

Conclusion

» Unbiasedness is key;
> Codebook optimality is not worth it;

» High compression rate can be achieved and lead to important
energy savings.
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