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MOTIVATION

Consider the problem of recovery of an unknown signal x∗ ∈ Rn from linear noisy

observations (linear regression):

ηi = ϕT
i x∗ + σξ , i = 1, ..., N,

where ϕi ∈ Rn are �random regressors� and ξi are zero-mean noises with E{ξ2
i
} ≤

1; we suppose that ϕi and ξi are i.i.d..

• In our setting, n is �large� and

N ≪ n,

but x∗ is s-sparse, namely, has ≤ s nonvanishing entries.

• Let us consider Stochastic Optimization problem

min
x∈X

{
g(x) = E{ 1

2
(η1 – ϕT

1 x)2} =: E{G(x, ωi = [ϕi, ηi])}
}
. (SR)

We assume that E{ϕiϕ
T
i
} = Σ ≻ 0,

g(x) = E{G(x, ωi)} = 1
2
(x – x∗)

TΣ(x – x∗) + σ2,

and x∗ is the unique minimizer of (SR).
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T
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g(x) = E{G(x, ωi)} = 1
2(x − x∗)TΣ(x − x∗) + σ2,
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There are several approaches to solving (SR).

• Note that observations ηi and ϕi provide us with unbiased estimates G(x, ωi) of
the problem objective g(x), so one can build a Sample Average Approximation

(SAA)

ĝ(x) =
1
N

N

∑
i=1

G(x, ωi) = 1
2N∥η − ΦTx∥2

2, Φ = [ϕ1, ..., ϕN],

of g(x) and then solve the the problem by a deterministic optimization routine.

• Iterative thresholding algorithms Blumensath, Davies '09, Foygel Barber et al.

'18, '19, Jain et al. '14, ...

• ℓ1-minimization�replacing sparsity constrained minimization with ℓ1-penalization,

e.g., solving instead

min
x

ĝ(x) + κ∥x∥1, κ > 0, (Lasso)

Bickel et al. '09, Candes et al. '06, '07,..., Dalalyan, Thompson '19, Fazel '08,

...
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• Let ∥a∥s,1 be the sum of s largest amplitudes of a.

Assume that Φ = [ϕ1, ..., ϕN] satis�es

∥z∥s,1 ≤ λ
√

s∥ΦTz∥2 + χ∥z∥1. (Q(χ, λ))

When penalty κ is chosen properly and condition Q(χ, λ) holds with χ < 1
2, for any

s-sparse x∗ ∈ Rn, solution x̂N to (Lasso) satis�es �with high probability�

∥x̂N − x∗∥1 ≲ τ
λ2sσ√

N

with τ containing �logarithmic factors� in N and n.

• For certain distributions of ϕ's, matrix Φ satis�es Q(χ, λ) with χ < 1/2 for

s ≍ m/ ln(n/N) with �high probability.�
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Utilizing Stochastic Approximation (SA)

Agarval et al. '12, Gaillard, Wintenberger '17, Nguyen et al. '17, Shalev-Shwartz

et al. '11, Srebro et al. '10, ...

Note that

∇G(x, ωi) = ϕiϕ
T
i (x − x∗) − σξiϕi

is an unbiased estimate of ∇g(x) = Σ(x − x∗), with

ζ(x, ωi) = ∇G(x, ωi) −∇g(x) = (ϕiϕ
T
i − Σ)(x − x∗) − σξiϕi.

• Consider a toy situation in which

• regressors ϕi are a.s. bounded, ∥ϕi∥∞ ≤ r < ∞ with identity covariance matrix

Σ = E{ϕ1ϕT
1 } = I

• noise variance σ2 is �small�

(�in the limit� we are looking for a sparse solution of the system ΦTx = η )

• we know that ∥x∗∥1 ≤ R, i.e., x∗ ∈ X = {x ∈ Rn : ∥x∥1 ≤ R}.

- 4 -



• When using �standard� (Euclidean) Stochastic Approximation,

xt = πX
[
xt−1 − γt∇G(xt−1, ωt)

]
, x0 = 0

(here πX is the Euclidean projection on X and γt > 0 are �appropriate� stepsizes),

after N ≫ 1 steps one has

E{g(xN)} − g∗ ≍
E{∥ζ(x∗, ω1)∥2

2}
N

where xN is the approximate solution by SA, with

E{∥ζ(x∗, ω1)∥2
2} = σ2E{∥ϕ1∥2

2} ≍ σ2n

leading to the error estimate

E{g(xN)} − g∗ ≍ σ2 n
N

depending on the problem dimension n.
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• (Non-Euclidean) Stochastic Mirror Descent algorithm allows to �remove� the

�n-factor�.

Using �ℓ1-Mirror Descent� with constant stepsize parameter β ≥ 1 we get (up to

logarithmic in n factors)

N

∑
t=1

[E{g(xt)} − g∗] ≲ R2β + β−1
N

∑
t=1

E{∥ζ(xt−1, ωt)∥2
∞}. (MD1)

Now

ς(x) := E{∥ζ(x, ω)∥2
∞}1/2 = E{∥(ϕϕT − I)(x − x∗)∥2

∞}1/2 + σ2E{∥ξϕ∥2
∞}1/2

≤ E{∥ϕ∥2
∞[ϕT(x − x∗)]2}1/2 + σ2E{∥ϕ∥2

∞}1/2

≤ r2∥x − x∗∥1 + σr ≤ r2R + σr

does not depend on dimension; choosing β = (r2 + σr/R)
√

N, we obtain by convexity
of g:

N
[

E
{

g
( 1

N

N

∑
t=1

xt︸ ︷︷ ︸
xN

)}
− g∗

]
≤

N

∑
t=1

[E{g(xt)} − g∗] ≲ [rR2 + σR]N1/2,

so that

E {g (xN)} − g∗ ≲
r2R2 + σrR√

N
.

Question: how this bound can be improved?
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• Using �strong convexity� of g,

g(x) − g∗ = 1
2∥x − x∗∥2

2.

We want to use strong convexity w.r.t. ∥ · ∥2 in the non-Euclidean algorithm tuned

for ∥ · ∥1

⇒Use sparsity: if x is s-sparse, one has

∥x − x∗∥1 ≤
√

2s∥x − x∗∥2,

thus
g(x) − g∗ = 1

2∥x − x∗∥2
2 ≥

1
4s
∥x − x∗∥2

1.

⇒Organize the algorithm �in stages�:

� at the k-th stage of the method, run Nk iterations of the Stochastic Mirror

Descent recursion

� then, �sparsify� the obtained approximate solution by zeroing out all but s
entries of largest amplitudes and use strong convexity to update the bound

for the error of solution.
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• Re�ne error bounds of Mirror Descent.

Note that the error ζ(x, ω1) of the stochastic gradient can be decomposed into

ζ(x, ω1) = [ϕ1ϕT
1 − I](x − x∗)︸ ︷︷ ︸

=:ζ1(x,ω1)

+ σξ1ϕ1︸ ︷︷ ︸
=:ζ2(ω1)

.

�Variance� ς2
1(x) of the �rst component is proportional to g(x) − g(x∗):

ς2
1(x) = E{∥ζ1(x, ω)∥2

∞} ≤ 2(r2 + 1)∥x − x∗∥2
2 ≲ r2[g(x) − g∗],

while �variance� ς2
2 of the second,

ς2
2 = E{∥ζ2(ω)∥2

∞} ≤ σ2r2

does not depend on x (and is small when σ2 is small).

As a result, for the �total� variance ς2(x) we get

ς2(x) = E{∥ζ(x, ω)∥2
∞} ≲ r2[g(x) − g∗] + σ2r2.
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When submitting into (MD1) we get

N

∑
t=1

[E{g(xt)} − g∗] ≲ R2β + β−1
N

∑
t=1

(r2[g(xt−1) − g∗] + σ2r2)︸ ︷︷ ︸
≳E{∥ζ(xt−1,ωt)∥2

∞

,

and for β > r2,

N

∑
t=1

[E{g(xt)} − g∗] ≲ R2β +
r2[g(x0) − g∗]

β
+

Nσ2r2

β
,

what results in

E {g (xN)} − g∗ ≤
βR2

N
+

r4R2

βN
+

σ2r2

β
.

⇒Faster convergence in the situation of �small additive noise� (small σ).



Problem setting

• Let E be a Euclidean space. Consider a Stochastic Optimization problem

min
x∈X

[
E{G(x, ω)}

]
(SO)

where

� X ⊂ E is a convex set with nonempty interior

� ω is a random variable on a probability space Ω with distribution P
� G : X × Ω → R

• Let ∥ · ∥ be a norm on E, and let ∥ · ∥∗ be the conjugate norm, i.e.,

∥s∥∗ = max
x

{⟨s, x⟩ : ∥x∥ ≤ 1}, s ∈ E.
We suppose that

� the expected objective g(x) = E{G(x, ω)} is �nite for all x ∈ X, convex and

di�erentiable on X with Lipschitz-continuous on X gradient ∇g(·):

∥∇g(x′) −∇g(x)∥∗ ≤ L∥x − x′∥, ∀ x, x′ ∈ X. (Lip)

� the problem is solvable and g(·) satis�es the quadratic growth condition on X
w.r.t. ∥ · ∥2:

∀x ∈ X : g(x) − g(x∗) ≥ 1
2κ∥x − x∗∥2

2.
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• We assume that we have access to a stochastic (gray box) oracle�a device

which can generate ω ∼ P and compute ∀x ∈ X a random unbiased estimation

∇G(x, ω)[:= ∇xG(x, ω)]

of ∇g(x).

Assumption [S1]. G(·, ω) is smooth on X, i.e., it is continuously di�erentiable

on X for almost all ω ∈ Ω, and

∥∇G(x, ω) −∇G(x′, ω)∥∗ ≤ L(ω)∥x − x′∥

with E{L(ω)} ≤ ν < ∞. We assume that

E{∇G(x, ω)} = ∇g(x), E{∥∇G(x, ω) −∇g(x)︸ ︷︷ ︸
=:ζ(x,ω)

∥2
∗} ≤ ς2(x), ∀ x ∈ X,

and, furthermore, there are 1 ≤ κ,κ′ < ∞ such that the bound holds:

ς2(x) ≤ κν[g(x) − g(x∗) − ⟨∇g(x∗), x − x∗⟩] + κ′ E{∥ζ(x∗, ω)∥2
∗}︸ ︷︷ ︸

=:ς2
∗

. (S1)

• In the case of toy linear regression example above, stochastic gradient

∇G(x, ω) = ϕϕT(x − x∗) + σξϕ

satis�es Assumption S1 with ς2
∗ = σ2r2, ν = r2 + 1, κ = 8 and κ′ = 2.
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• More generally, when stochastic gradient ∇G(·, ω) is Lipschitz continuous with

a.s. bounded Lipschitz constant L(ω) ≤ ν,

ς2(x) = E{∥∇G(x, ω) −∇g(x)∥2
∗} ≤

(
E{∥∇G(x, ω) −∇G(x∗, ω)∥2

∗}
1/2

+∥∇g(x) −∇g(x∗)∥∗ + E{∥∇G(x∗, ω) −∇g(x∗)∥2
∗}︸ ︷︷ ︸

=ς2
∗

1/2
)2

.

On the other hand, by Lipschitz continuity of ∇G(·, ω) we have

G(x, ω) − G(x∗, ω) ≥ ⟨∇G(x∗, ω), x − x∗⟩ + (2ν)−1∥∇G(x, ω) −∇G(x∗, ω)∥2
∗,

implying that

ς2(x) ≤
(

[2νE{G(x, ω) − G(x∗, ω) − ⟨∇G(x∗, ω), x − x∗⟩}]1/2

+ [2ν(g(x) − g(x∗) − ⟨∇g(x∗), x − x∗⟩)]1/2 + ς∗
)2

≲ ν[g(x) − g(x∗) − ⟨∇g(x∗), x − x∗⟩] + ς2
∗.
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Assumption [S2] The optimal solution x∗ to problem (SO) is s-sparse.

Furthermore, given x ∈ X one can e�ciently compute a �sparse approximation�

of x�an optimal solution xs = sparse(x) to the optimization problem

min ∥x − z∥2 over s-sparse z ∈ X.

Moreover, for any s-sparse z ∈ E norm ∥ · ∥ satis�es ∥z∥ ≤
√

s∥z∥2.

In what follows we say that xs is a �sparsi�cation of x.�

Examples

1. �Vanilla� sparsity: in this case E = Rn with the standard inner product, and

∥ · ∥ = ∥ · ∥1. Assumption S2 clearly holds, e.g., when X is orthosymmetric,

e.g., a ball of ℓp-norm on Rn, 1 ≤ p ≤ ∞.

2. Group sparsity... ∥x∥ = ∑K
k=1 ∥xk∥2�block ℓ1/ℓ2-norm.

3. Low rank sparsity structure... ∥x∥ = ∑
q
i=1 σi(x) is the nuclear norm,

σ1(x) ≥ σ2(x) ≥ ... ≥ σq(x) are singular values of x.
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Proximal setup
• Let ϑ : E → R be a continuously di�erentiable convex function which is strongly

convex w.r.t. norm ∥ · ∥, i.e.,

⟨∇ϑ(x) −∇ϑ(x′), x − x′⟩ ≥ ∥x − x′∥2, ∀x, x′ ∈ E,

we assume that ϑ(x) ≥ ϑ(0) = 0. We say that Θ is the constant of quadratic growth

of ϑ(·) if

∀x ∈ E ϑ(x) ≤ Θ∥x∥2.

• If, in addition, Θ is �not too large,� and for any x ∈ X, a ∈ E and β > 0 a high

accuracy solution to the minimization problem

min
z∈X

{⟨a, z⟩ + βϑ(z − x)}

can be easily computed we say that distance-generating function (d.-g.f.) ϑ is

�prox-friendly.�
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Stochastic Mirror Descent (SMD)
For x, x0 ∈ X, u ∈ E, and β > 0 consider the proximal mapping

Proxβ(u, x; x0) := argmin
z∈X

{⟨u − β[⟨∇ϑ(x − x0), z⟩ − ϑ(z − x0)]},

and for i = 1, 2, . . . , consider Stochastic Mirror Descent recursion

xi = Proxβi−1
(∇G(xi−1, ωi), xi−1; x0), x0 ∈ X,

Here βi > 0, i = 0, 1, . . . , is a stepsize parameter, and ω1, ω2, . . . are independent

identically distributed (i.i.d.) realizations of random variable ω, corresponding to

the oracle queries at each step of the algorithm.

The approximate solution to problem (SO) after N iterations is de�ned as

weighted average

x̂N =

[
N

∑
i=1

β−1
i−1

]−1 N

∑
i=1

β−1
i−1xi.
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Proposition 1 Suppose that SMD algorithm is applied to problem (SO). We

assume that Assumption S1 holds and that initial condition x0 ∈ X is independent

of ωi, i = 1, 2, ... and such that

E{∥x0 − x∗∥2} ≤ R2;

we use constant stepsizes

βi ≡ β ≥ 2κν, i = 1, 2, ..., m.

Then approximate solution

x̂m =
1
m

m

∑
i=1

xi

after m steps of the algorithm satis�es

E{g(x̂m)} − g∗ ≤
2R2Θβ

m
+

R2κν2

βm︸ ︷︷ ︸
I(1)

+
2κ′ς2

∗
β︸ ︷︷ ︸
I(2)

.
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Algorithm 1 [SMD-SR]

Parameters: R (initial error bound), s̄ (upper bound for s), κ, ...

1. Preliminary phase

Initialization: Set y0 = x0, R0 = R, β0 = 2κν, and m0 ≍ s̄
κ Θκν.

Put

K ≍ ln2

(
κ

s̄
R2

0νκ
ς2
∗κ′

)
and run

K = min
{⌊

N
m0

⌋
, K

}
stages of the preliminary phase.

Stage k = 1, ..., K: Compute approximate solution x̂m0(yk−1, β0) after m0 it-

erations of the SMD algorithm with constant stepsize parameter β0,

corresponding to the initial condition x0 = yk−1. Then de�ne yk as �s-
sparsi�cation� of x̂m0(yk−1, β0), i.e., yk = sparse(x̂m0(yk−1, β0)).

Output: de�ne ŷ(1) = yK and x̂(1) = x̂m0(yK−1, β) as approximate solutions at the

end of the phase.
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2. Set M = N − m0K and

mk ≍
s̄Θνκ

κ
2k, k = 1, 2, ...

If m1 > M terminate and output ŷN = ŷ(1) and x̂N = x̂(1) as approximate solutions

by the procedure; otherwise, continue with stages of the asymptotic phase.

Asymptotic phase

Initialization: Set

K′ = max

{
k :

k

∑
i=1

mi ≤ M

}
,

y′0 = ŷ(1), and βk = 2kνκ, k = 1, ..., K′.

Stage k = 1, ..., K′: Compute x̂mk(y′k−1, βk); same as above, de�ne y′k =
sparse(x̂mk(y′k−1, βk)).

Output: After K′ stages, output ŷN = y′K′ and x̂N = x̂mK′(y
′
K′−1, βK′).



What is going on?

• During the preliminary stage k, assume that E{∥yk−1 − x∗∥2} ≤ R2
k and I(1)

k ≥ I(2)
k in

the bound of Proposition 1:

E{g(x̂m)} − g∗ ≤
2R2

kΘβ

m
+

2R2
kΘκν2

2βm︸ ︷︷ ︸
I(1)

k

+
2κ′ς2

∗
β︸ ︷︷ ︸
I(2)

k

⇒when choosing β = 2νκ we get after m0 ≍ Θκνs̄/κ iterations

E{g(x̂m0)} − g∗ ≲
R2

kΘκν

m0
≲

R2
kκ

s̄
.

• Due to quadratic lower bounding, ∥x̂t − x∗∥2
2 decreases by factor O(1/s̄), and

because for yk = sparse(x̂m0)

∥yk − x∗∥ ≤
√

2s∥yk − x∗∥2
2 ≤ 2

√
2s∥x̂m0 − x∗∥2

2,

so that ∥yk − x∗∥ decreases by a constant factor and becomes ≤ Rk+1 = Rk/2.

• As a result, after k preliminary stages of the algorithm,

E{∥yk − x∗∥2} ≤ 2sE{∥yk − x∗∥2
2} ≲ 2−kR2 +

ς2
∗s̄κ′

κνκ ≲
s̄
κ

ς2
∗κ′

νκ .

after k = K preliminary stages.
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• During asymptotic stage k, I2 ≥ I1. When ∥y′k−1 − x∗∥ ≤ Rk, the choice

βk =
ς∗
Rk

√
κm
Θ

results in

E{g(x̂mk)} − g∗ ≲ Rkς∗

√
Θκ
mk

,

⇒ after

mk ≍
s2ς2

∗Θκ
κ2R2

iterations

g(x̂mk) − g∗ ≲
R2

kκ

s̄
and, by quadratic lower bound,

∥yk − x∗∥2 ≤ 8s∥x̂mk − x∗∥2
2 ≤

16s
κ

[g(x̂t) − g∗] ≲ R2
k/4 = R2

k+1.
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Main result Let | · | stand for ∥ · ∥2- or ∥ · ∥-norm.

We de�ne

• Recovery risk: maximal over x∗ ∈ X expected squared error

Risk|·|(x̂|X) = sup
x∗∈X

(
E{|x̂ − x∗|2}

)1/2

• Prediction risk: maximal over x∗ ∈ X expected suboptimality

Riskg(x̂|X) = sup
x∗∈X

E{g(x̂)} − g∗.

Theorem 1 Suppose that N ≥ m0, so at least one preliminary stage of Algorithm

1 is completed. Then approximate solutions x̂N and ŷN produced by the algorithm

satisfy

Riskg(x̂N|X) ≤ κR2

s̄
exp

{
− cNκ

Θκs̄ν

}
+ C

ς2
∗s̄κ′Θ
κN

,

and

Risk∥·∥(ŷN|X) ≤
√

2sRisk∥·∥2
(ŷN|X) ≤

√
8sRisk∥·∥2

(x̂N|X)

≲ R exp
{
− cNκ

Θκs̄ν

}
+

ς∗s̄
κ

√
Θκ′

N
.
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Application to sparse linear regression

Consider the problem of recovery of a sparse signal x∗ ∈ Rn, n ≥ 3, from indepen-

dent and identically distributed observations

ηi = ϕT
i x∗ + σξi, i = 1, 2, ..., N,

with ϕi and ξi mutually independent and such that E{ϕiϕ
T
i } = Σ, κΣ I ⪯ Σ, and

∥Σ∥∞ ≤ υ,1) with known κΣ > 0 and υ; we also assume that E{ξi} = 0 and E{ξ2
i } ≤ 1.

We are about to apply Stochastic Optimization to the problem

min
x∈X

g(x) = 1
2E{ (η − ϕTx)2︸ ︷︷ ︸

=:G(x,ω=[ϕ,η])

}

 . (SR)

We set ∥ · ∥ = ∥ · ∥1 with ∥ · ∥∗ = ∥ · ∥∞, and we use �ℓ1-proximal setup� of the SMD-SR

algorithm with quadratically growing for n > 2 distance-generating function

ϑ(x) = 1
2e ln(n) n(p−1)(2−p)/p∥x∥2

p, p = 1 +
1

ln n
,

the corresponding Θ satisfying Θ ≤ 1
2e2 ln n.

1) For matrix Q we denote ∥Q∥∞ = maxij |[Q]ij|.
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Proposition 2 Suppose that

E{∥ϕϕT(x − x∗)∥2
∞} ≲ κν(x − x∗)TΣ(x − x∗)

and that sample size N satisfy

N ≥ m0 ≍
s̄

κΣ
νκ ln[n],

so at least one preliminary stage of Algorithm 1 is completed.

Then approximate solutions x̂N and ŷN produced by the algorithm satisfy

Risk∥·∥(ŷN|X) ≤ 2
√

2sRisk∥·∥2
(x̂N|X) ≲ R exp

{
− cNκΣ

κs̄ν ln n

}
+

σs̄
κΣ

√
ν ln n

N

Riskg(x̂N|X) ≲
κΣR2

s̄
exp

{
− cNκΣ

κs̄ν ln n

}
+

νσ2s̄κ′ ln n
κΣN

.
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• Remark: apart from positive de�niteness of Σ, assumptions about regressor

model essentially resume to

E{∥ϕϕTz∥2
∞} ≲ ν∥Σ1/2z∥2

2 ∀z ∈ Rn. (Σ1)

Bound (Σ1) holds in a variety of situations, e.g., it su�ces that

E{(ϕTz)4}1/2 ≲ E{(ϕTz)2} ∀z ∈ Rn.

In particular, it holds in the case of

• bounded regressors such that ∥ϕi∥∞ a.s.

• sub-Gaussian regressors ϕi ∼ SG(0, S), i.e., meaning that

E{euTϕ} ≤ exp
{1

2uTSu
}

for all u ∈ Rn.

(Σ1) holds when S is �similar� to the covariance matrix Σ of ϕ, i.e. S ⪯ µΣ.

• scale mixtures ϕ ∼
√

Zη, random variable Z > 0 a.s. with E{Z2} < ∞ and

η ∈ Rn with E{ηηT} = Σ0 satis�es (Σ1) and is independent of Z.

E.g., ϕ ∼ tn(q, Σ0) (n-dimensional Student distribution with q d.f.) with q > 4.

• ...
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Low rank matrix recovery

• Let E be the space of real p × q matrices equipped with the Frobenius scalar

product

⟨a, b⟩ = Tr
(
aTb

)
.

Consider the problem of recovery of a p × q matrix x∗, from i.i.d. observations

ηi = ⟨ϕi, x∗⟩ + σξi, i = 1, 2, ..., N,

with random regressors ϕi ∈ Rp×q having covariance operator

Σ(x) = E{ϕ⟨ϕ, x⟩},

ξi ∈ R independent of ϕi with E{ξi} = 0 and E{ξ2
i } ≤ 1.

• We put ∥a∥2 = ⟨a, a⟩1/2, ∥ · ∥ is the nuclear norm ∥x∥ = ∥σ(x)∥1 where σ(x) is the
singular spectrum of x, and ∥y∥∗ = ∥σ(y)∥∞ (the spectral norm).

• We suppose that

κΣ∥z∥2
2 ≤ ⟨z, Σ(z)⟩ ≤ υ∥z∥2

2 ∀z ∈ Rp×q,

with known κΣ > 0 and υ, and denote ∥z∥Σ =
√
⟨z, Σ(z)⟩ =

√
E{⟨ϕ, z⟩2}.

• We assume that x∗ is of rank s ≤ s̄ ≤ q and that we are given R < ∞ and x0 ∈ X
satisfying ∥x∗ − x0∥ ≤ R.
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Consider the Stochastic Optimization problem

min
x∈X

{
g(x) = 1

2E{ (η − ⟨ϕ, x⟩)2︸ ︷︷ ︸
=:G(x,ω=[ϕ,η])

} = 1
2E{(σξ + ⟨ϕ, x∗ − x⟩)2} = 1

2(∥x − x∗∥2
Σ + σ2)

}
. (LRR)

• We are to solve (LRR) utilizing SMD-SR algorithm in the proximal setup asso-

ciated with quadratically growing for q ≥ 2 distance-generating function

ϑ(x) = 2e ln(2q)

[
q

∑
j=1

σ1+r
j (x)

] 2
1+r

, r =
(
12 ln[2q]

)−1.

with Θ ≤ C ln[2q].

• We suppose that regressors ϕi ∈ Rp×q are drawn from a sub-Gaussian ensemble,

ϕi ∼ SG(0, S), with sub-Gaussian operator S, i.e.,

E{e⟨x,ϕ⟩} ≤ e⟨x,S(x)⟩/2 ∀x ∈ Rp×q

with linear positive de�nite S(·) which is similar to Σ(·), i.e., S ⪯ µΣ for some µ < ∞.
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Proposition 3 In the just described situation, let the sample size N satisfy

N ≍
[

µ2υ(p + q)s̄ ln q
κΣ

]
,

so that at least one preliminary stage of Algorithm 1 is completed.

Then there is an absolute c > 0 such that approximate solutions x̂N and ŷN

produced by the algorithm satisfy

Risk∥·∥(ŷN|X) ≤ 2
√

2sRisk∥·∥2
(x̂N|X) ≲ R exp

{
− cNκΣ

µ2υ(p + q)s̄ ln q

}
+

σs̄
κΣ

√
µυ(p + q) ln q

N
,

Riskg(x̂N|X) ≲
κΣR2

s̄
exp

{
− cNκΣ

µ2υ(p + q)s̄ ln q

}
+

σ2µυ(p + q)s̄ ln q
κΣN

.
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Minibatch implementation

One may use minibatches to save on prox-mapping computations when imple-

menting the asymptotic phase of the algorithm. It amounts to replace gradient

observation ∇G(x, ω) with averages

∇G(x, ω J) =
1
J

J

∑
j=1

∇G(x, ωj).

If choosing, at the k-th asymptotic stage,

Jk = 2kχ, βk = β0 ≍ κν, mk = m0 ≍
s̄
κ

Θκν

the method only performs m0 prox computations per stage.

• For instance, in sparse linear regression problem, when setting

χ ≍ ln n,

the error bounds for algorithm with minibatches coincide with those of Proposi-

tions 2 and 3 up to a logarithmic in n factors.
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How it works

• Consider sparse linear regression with i.i.d. random (ϕi, ξi). In our experiments,

Σ is diagonal with entries Σ11 ≤ Σ22 ≤ · · · ≤ Σnn evenly spaced over [κΣ, ν], parame-

ters (κΣ, ν) being speci�c for each experiment.

Indices of nonvanishing components of the optimal solution x∗ are evenly spaced

in [1, n] with the non-zero entries sampled from N (0, 1).

• When solving (SR), we compare the performance of the SMD-SR to that of

the �vanilla� non-Euclidean SMD and the Coordinate Descent algorithm (CDA)

of the Python package sklearn solving Lasso problem

min
x∈Rn

{
1

2N

N

∑
i=1

[ηi − ϕT
i x]2 + κ∥x∥1

}
with κ = 2σ

√
2 ln n

N .
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Experimental results

Comparison of SMD-SR (solid line) and SMD (dashed line) in the Gaussian

setting; (n, s) = (100 000, 50).



Comparison of SMD-SR (solid line) and Lasso by CDA (dashed line) in the

Gaussian setting; (n, s) = (50 000, 50).



Comparison of SMD-SR (solid line) and SMD (dashed line) in the case of

Student t4 regressors and noise distribution; (n, s) = (100000, 50).



Some extensions

• Enhancing reliability of solutions utilizing Median-of-Means approach.

Suppose that available sample of length N can be split into L independent samples

of length M ≍ N/L.

We may run Algorithm 1 on each subsample thus getting L independent recov-

eries x̂(1)
M , ..., x̂(L)

M , then compute an �enhanced solution� as a geometric median of

x̂(1)
M , ..., x̂(L)

M ,

x̂N,1−ϵ ∈ Argmin
x

L

∑
ℓ=1

∥x − x̂(ℓ)
M∥2,

and then set ŷN,1−ϵ = sparse(x̂N,1−ϵ).

• Reliable solution aggregation.

Assume that two independent observation samples of lengths N and K ≍ N are

available.

Same as above, we may use the �rst sample to compute L independent approxi-

mate SMD-SR solutions x̂(ℓ)
M , ℓ = 1, ..., L, M ≍ N/L.

Then we can �aggregate� x̂(1)
M , ..., x̂(L)

M �select the best of them in terms of the

objective value g(x̂(ℓ)
M ) by computing reliable estimations of di�erences g(x̂(i)

M)− g(x̂(j)
M)

using observations of the second sample.
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Consider

• ϵ-risk of recovery

Risk|·|,ϵ(x̂|X) = inf

{
r : sup

x∗∈X
Prob{|x̂ − x∗| ≥ r} ≤ ϵ

}
where | · | stands for ∥ · ∥2 or ∥ · ∥,

• ϵ-prediction risk

Riskg,ϵ(x̂|X) = inf

{
r : sup

x∗∈X
Prob{g(x̂) − g∗ ≥ r} ≤ ϵ

}
.

Theorem 2 Let ϵ ∈ (0, 1
4], and let x̂N,1−ϵ (resp., ŷN,1−ϵ) be a reliable solution by ag-

gregating L ≍ α ln[1/ϵ] independent approximate solutions x̂(1)
M , ..., x̂(L)

M by Algorithm

1. When N ≥ Lm0 we have

Riskg,ϵ(xN,1−ϵ|X) ≲
κR2

s̄
exp

{
− cNκ

κs̄νΘ ln[1/ϵ]

}
+

ς2
∗s̄κ′Θ ln[1/ϵ]

κN
,

Risk∥·∥,ϵ(yN,1−ϵ|X) ≤
√

2sRisk∥·∥2,ϵ(yN,1−ϵ|X) ≲ R exp
{
− cNκ

κs̄νΘ ln[1/ϵ]

}
+

ς∗s̄
κ

√
κ′Θ ln[1/ϵ]

N
.
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• Penalized algorithm�condition of quadratic minoration of g for the restricted
minoration condition

g(x) − g(x∗) ≥ µ⟨x − x∗, Σ(x − x∗)⟩, ∀x ∈ X,

where Σ ⪰ 0 is such that for some χ < 1/2, all z ∈ E and all s-sparsi�cations
zs of z it holds

∥zs∥ ≤ λ
√

s|z|Σ + χ∥z∥.

In this case, a �properly adjusted� implementation of the SMD algorithm for

composite optimization solving a sequence of problems

min
x∈X

g(x) + κk∥x∥ (Pk)

attains the bounds analogous to those of Theorem 3.

• Stochastic Variational Inequalities with sparse solutions can be addressed

when utilizing Mirror version of Popov's extragradient algorithm Popov '80.

• ...
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