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MOTIVATION

Consider the problem of recovery of an unknown signal x, € R" from linear noisy

observations (linear regression):
= Pix,+ i=1.,N
= ¢ xeF0g, 1=1.N,

where ¢ € R" are ‘‘random regressors’ and (; are zero-mean noises with Ei{él}fg
|; we suppose that ¢ and ¢ are i.i.d..

e In our setting, N is ‘‘large’ and

N < n,

but X, is s-sparse, namely, has < s nonvanishing entries.

e Let us consider ©Stochastic Optimization problem

in {60 = E{fn— g%} = E{G,w =g, D} (SR)
S
We assume that E{¢¢/} =X > O,

&) = E{Gx,w)D} = fx—x) TZx—x) + 0%,

and X, is the unique minimizer of (SR).
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TJIABA 4. METOJH PENEHNWA 3KCTPEMAJBHHX 3AJAY C
TJAIKMMY KOMIIOHEHTAMU

4.1. OnTumanbHele MeTOZb 6e3yCHOBHON MUHUMU3ALNY

GYHKUMA C NUNUULEBHM TPaZUeHTOM

B sToM naparpade paccMaTpMBamTCS UTEDATUBHEHE METOZH pe-
WeHNs Cllefybliell 3KCTpeMaNbHON 3azZadn:
min { f(z)| x e R" )}, (4.1.1)
rae f( x ) - Bumyknas QyHkuma u3s xxacca F( L , m)

lIpexze Bcero ocTaHoBMMCH Ha cIocofe. NONYYeHUS OLEHOK
CKOPOCTM CXOAMMOCTH, KOTODHIl 6YZET UCIONb30BATHCS B  HACTOS-
mem maparpade.
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Motivation

Consider the problem of recovery of an unknown signal x, € R" from linear noisy
observations (linear regression):

ni=¢lx.+0é i=1,..,N,

where ¢; € R" are “random regressors” and ¢; are zero-mean noises with E{gf} <1;
we suppose that ¢; and ¢; are i.i.d..

e In our setting, n is “large” and
N < n,
but x. is s-sparse, namely, has < s nonvanishing entries.

e Let us consider Stochastic Optimization problem

min { g(x) = E{3(n — ¢} = E{G(x, w; = [¢0, 7D} }. (SR)
We assume that E{¢;¢/} =% > 0,
2(x) = E{G(x,w;) } = %(x — ) 2(x — x,) + 07,

and x, is the unique minimizer of (SR).



There are several approaches to solving (SR).

e Note that observations »; and ¢; provide us with unbiased estimates G(x,w;) of
the problem objective g(x), so one can build a Sample Average Approximation
(SAA)

. 1
§x) = 5 L G(x w) = gylly —@'xl2, @ =1[p1,. on]
i=1
of ¢(x) and then solve the the problem by a deterministic optimization routine.

e [terative thresholding algorithms Blumensath, Davies '09, Foygel Barber et al.
'18, '19, Jain et al. '14, ...

e /1-minimization—replacing sparsity constrained minimization with ¢/;-penalization,
e.g., solving instead
min g(x) + «||x||1, x>0, (Lasso)
X

Bickel et al. '09, Candes et al. '06, 'O7,..., Dalalyan, Thompson '19, Fazel '08,



e Let |[a|ls1 be the sum of s largest amplitudes of a.

Assume that & = [¢y, ..., ¢n] satisfies

Izlls1 < AV[| @zl + x]|z])1- (Q(x, A))

When penalty k is chosen properly and condition Q(x,A) holds with x < % for any
s-sparse x, € R", solution xy to (Lasso) satisfies “with high probability”

N A2
|%n — . STE

VN

with T containing “logarithmic factors” in N and n.

e For certain distributions of ¢'s, matrix & satisfies Q(x,A) with x < 1/2 for
s <m/In(n/N) with “high probability.”



Utilizing Stochastic Approximation (SA)

Agarval et al. '12, Gaillard, Wintenberger '17, Nguyen et al. '17, Shalev-Shwartz
et al. '11, Srebro et al. '10, ...

Note that
VG(x,wi) = itp} (x — x,) — 0Cipy
is an unbiased estimate of Vg(x) = X(x — x,), with
{(x, wi) = VG(x,wi) — Vg(x) = (¢ip] — T)(x — x.) — 0igpi.

e Consider a toy situation in which

[¢i]|0 < 7 < 0o with identity covariance matrix

e regressors ¢; are a.s. bounded,
_ Ty _
2 = E{(P14’1 } =1
e noise variance ¢? is “small”

(“in the limit” we are looking for a sparse solution of the system ®Tx =17 )

e we know that ||x.|i <R, i.e., x. € X = {x € R": ||x|: < R}.



e When using “standard” (Euclidean) Stochastic Approximation,

Xt = T7tx [xt—l - ’YtVG(xt—l,wt)}, x0=0

(here mx is the Euclidean projection on X and v; > 0 are “appropriate” stepsizes),
after N > 1 steps one has

2
E{g(xN)} — g, = E{Hg(x;/[wl)HZ}

where xy is the approximate solution by SA, with

E{[|C(x., w1) |3} = FE{[|¢n]5} =< o*n

leading to the error estimate
n
E{g(xn)} — g« = ‘TZN

depending on the problem dimension n.



e (Non-Euclidean) Stochastic Mirror Descent algorithm allows to “remove” the
“n-factor’.

Using “/;-Mirror Descent” with constant stepsize parameter B > 1 we get (up to
logarithmic in n factors)

N N
D [E{g(x)} =gl S RPB+ B ) E{[|G(xe, wi)llee}- (MDy)

Now

E{l99" — D(x —x) |2}/ + E{|gp]12 )2
E{lg 207G = x P}/ + E{ g}

r||x — x.||1 + or < *R+0v

g(x) = E{[|¢(x, w)||%}"/>

VARRVA

does not depend on dimension; choosing 8 = (r2+ar/R)\/N, we obtain by convexity
of g:

1Y A 2 1/2
N{E{g(— E xt)} —g*] < E [E{g(xt)} — g«] S [rR*+0R]N"%,
N——

Xy

so that

2p2
<rR +(7rR.

E{g(EN)}_g* ~ \/N

Question: how this bound can be improved?
-6 -



e (Non-Euclidean) Stochastic Mirror Descent algorithm allows to “remove” the
“n-factor’.

Using “¢;-Mirror Descent” with constant stepsize parameter B > 1 we get (up to
logarithmic in n factors)

N N
> [E{g(x)} — &1 S R*B+B7 Y E{[[C(xi1, willa}- (MD»)
t=1 t=1
Now
6(x) = E{[|g(c )&} = E{l(99" — Dix — x5} + " E{ [ E[I5} 2

E{¢13[07 (x — x )P} + E{[|pl|3} /2

r||x — x4||1 + o7 < PR +07

IA A

does not depend on dimension; choosing 8 = (r2+ar/R)\/N, we obtain by convexity
of g:

1 & A 2 1/2
N[E{g<ﬁzxt)} —g*] <) [E{g(xn} — ] S [FR*+oRIN?,

t=1

so that (g (%)} — _R_PR+0rR

Question: how this bound can be improved?
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e Using “strong convexity” of g,

g(x) — g = 3llx — x.[5.

We want to use strong convexity w.r.t. || -||2 in the non-Euclidean algorithm tuned
for |- 11

= Use sparsity: if x is s-sparse, one has

lx =2l < V2s]lx — x.]l2,

thus . 5 1 )
8(x) = 8« = gllx —xuflz = -l — xif5.

= Organize the algorithm “in stages':

— at the k-th stage of the method, run N; iterations of the Stochastic Mirror
Descent recursion

— then, “sparsify” the obtained approximate solution by zeroing out all but s
entries of largest amplitudes and use strong convexity to update the bound
for the error of solution.
























e Refine error bounds of Mirror Descent.

Note that the error ((x,w;) of the stochastic gradient can be decomposed into

Z(x, w1) = [p1p] — I1(x — x*)+a§1q>1
= gl(x w) = €2(w1)

“Variance” ¢7(x) of the first component is proportional to g(x) — g(x.):

61(0) = E{[|C1(x, w)[|o} < 20 + D|x — x.[[3 < *[g(x) — g4,

while “variance” ¢3 of the second,

63 = E{||2(w) &} < o?r?

does not depend on x (and is small when ¢? is small).
As a result, for the “total” variance ¢?(x) we get

¢*(x) = E{[|C(x, w) |5} < rP[g(x) — gl + o*r*.



When submitting into (MD;) we get

Z[E{g(xt )} -8l SRB+B! Z(rz[g(xt 1) —g*] +0°1%),

=1 >E{I0G w2

and for B > r?,

%[E{g(xt)} —¢.] <R+ 72[8(95(;3) —8d (;21,2,
=1

what results in

E{g(*n)} — g« < +

= Faster convergence in the situation of “small additive noise” (small o).



Problem setting

e Let E£E be a Euclidean space. Consider a Stochastic Optimization problem

Igéi)rg [E{G(x,w)}] (SO)
where
— X C E is a convex set with nonempty interior
— w is a random variable on a probability space () with distribution P
— G: XxO—>R

e Let |[-|| be @a norm on E, and let || - ||« be the conjugate norm, i.e.,

s« = mflx{<s,x> x| <1}, seE.
We suppose that
— the expected objective g(x) = E{G(x,w)} is finite for all x € X, convex and
differentiable on X with Lipschitz-continuous on X gradient Vg(-):

IVg(x") = Vg« < Lilx — x], vxx'eX (Lip)

— the problem is solvable and g(-) satisfies the quadratic growth condition on X
w.r.t. |- ||2:

VreX: g(x) - g(x) > dellx - x. 3



e \We assume that we have access to a stochastic (gray box) oracle—a device
which can generate w ~ P and compute Vx € X a random unbiased estimation

VG(x, w)[:= V,G(x, w)]
of Vg(x).

Assumption [S1]. G(,,w) is smooth on X, i.e., it is continuously differentiable
on X for almost all w € ), and

VG, w) = VG, w) |« < L(w)]|x — x|
with E{L(w)} < v < co. We assume that

E{VG(x,w)} = Vg(x), E{|VG(x,w)—Vg®)[} <), VxeX,

= (%)

and, furthermore, there are 1 < s, < oo such that the bound holds:

¢*(x) < sv[g(x) — g(xs) — (Vg(xs), x — x:)] + %/F{HC(X*/W)H%}J (S1)
=i¢
e In the case of toy linear regression example above, stochastic gradient
VG(x,w) = ¢’ (x — x.) + 0
satisfies Assumption S1 with ¢2=¢%, v=r>+1, k=8 and «’ = 2.

- 10 -



e More generally, when stochastic gradient VG(-,w) is Lipschitz continuous with
a.s. bounded Lipschitz constant L(w) < v,

¢*(x) = E{|VG(x,w)— Vg)|?} < (E{HVG(x,w) ~VG(x., w2}

+||Vg(x) — Vg(xs)] +F{HVG(3€*,w) _ vg(x*)”i}/”z)z.

:gz

On the other hand, by Lipschitz continuity of VG(-,w) we have
G(x,w) — G(xy, w) > (VG(xy, w), x — xy4) + (21/)_1HVG(x, w) — VG(x*,w)Hi,
implying that
A(x) < <[21/E{G(x, w) — G(xy, w) — (VG(x4, w), x — x*>}]1/2

2
+[20(5(0) — g(x) — (Vg(x), x = x )]V +c. )
S Vgl — gl — (Vgle), x — xi)] + ¢,

- 11 -



Assumption [S2] The optimal solution x, to problem (SO) is s-sparse.

144

Furthermore, given x € X one can efficiently compute a “sparse approximation
of x—an optimal solution x; = sparse(x) to the optimization problem

min ||x — z||o over s-sparse z € X.

Moreover, for any s-sparse z € E norm || - || satisfies ||z|| < v/s||z||2-
In what follows we say that x; is a “sparsification of x.”

Examples
1. “Vanilla" sparsity: in this case E = R" with the standard inner product, and
|-l =1 |1- Assumption S2 clearly holds, e.g., when X is orthosymmetric,
e.d., a ball of £,-norm on R", 1 < p < c0.

2. Group sparsity... |lx| = =X, ||lxi|l.—Dblock £;/f-norm.

3. Low rank sparsity structure... ||x|| =YL, 0i(x) is the nuclear norm,
01(x) = 02(x) = ... = 04(x) are singular values of x.

- 12 -



Proximal setup
e Let 9: E— IR be a continuously differentiable convex function which is strongly
convex w.r.t. norm |-, i.e.,

(Vo(x) — Vo), x —x') > ||lx — x|, Vx,x' €E,
we assume that d(x) > 4(0) = 0. We say that © is the constant of quadratic growth
of 9(-) if
Vx € E d(x) < Ol|x]|]*.
e If, in addition, © is “not too large,” and for any x € X, a € E and B > 0 a high
accuracy solution to the minimization problem

min{(a,z) + fo(z — 1)}

can be easily computed we say that distance-generating function (d.-g.f.) 9 is
“prox-friendly.”

- 13 -



Stochastic Mirror Descent (SMD)

For x,xo € X, u € E, and > 0 consider the proximal mapping

Proxg(u, x; xo) := argmin { (u — B[{V(x — xo), z) — 8(z — x0)]},

zeX

and fori=1,2,..., consider Stochastic Mirror Descent recursion

x; = Proxg, (VG(xi_1,w;), xi_1;X0), X0 € X,

Here B; > 0, i =0,1,..., is a stepsize parameter, and wi,w,,... are independent
identically distributed (i.i.d.) realizations of random variable w, corresponding to
the oracle queries at each step of the algorithm.

The approximate solution to problem (SO) after N iterations is defined as
weighted average

N 1N 1
IN= () Bia| 2 Bixi
i=1 i=1

- 14 -



Proposition 1 Suppose that SMD algorithm is applied to problem (SO). We
assume that Assumption S1 holds and that initial condition xy € X is independent
of w;, 1=1,2,... and such that

E{[|x0 — x.]]*} < R%
we use constant stepsizes
Bi=B>2xv, i=1,2,..,m.

Then approximate solution

after m steps of the algorithm satisfies
2R?°OB R2%sv? 2:/¢2
+ + .
m pm b

) 1@

E{g(fm)} — & <

- 15 -



Algorithm 1 [SMD-SR]

Parameters: R (initial error bound), 5 (upper bound for s), «,

1. Preliminary phase
Initialization: Set yo = x9, Ro =R, Bo =2xv, and my <

R @

Put
K=<ns R%)
S g
and run
N | —
K:min{ L—J ,K}
0

stages of the preliminary phase.
Stage k = 1,..,K: Compute approximate solution X, (yx_1,Bo) after mq it-

erations of the SMD algorithm with constant stepsize parameter Sy,
Then define y, as “s-

corresponding to the initial condition xy = yx_1.
sparsification” of X, (yx_1,Bo), i-€., Yk = sparse(Xu,,(Vk—_1, Bo))-

Output: define ¥V = yx and xY = x,, (yx_1, B) as approximate solutions at the

end of the phase.
- 16 -



2. Set M =N —mpK and

SOV
my <
K

2k k=1,2,..

If m; > M terminate and output yy = ¥ and xy = ) as approximate solutions
by the procedure; otherwise, continue with stages of the asymptotic phase.

Asymptotic phase

Initialization: Set

k
K’:max{k: ZmiSM},
i=1
yp =y, and By =2, k=1,.., K.
Stage k = 1,..,K: Compute x,.(y, ,,Br); Same as above, define y, =
k yk 1 yk
sparse(Xm, (Y;_1, Br))-

Output: After K’ stages, output yn = yi and Xy = X, Wk 1, Bx)-



What is going on?
e During the preliminary stage k, assume that E{|lyx_1 — x.|*} < R? and I,El) > I,Ez) in

the bound of Proposition 1:
2RIOB 2RO 25/c>
E > — 9, < k k *
{g(xm)} g — m + 21817’1 + ;8
(2)
I?

Iy

< Ri@%v
5

24\

= when choosing B =2vk we get after my < @sv5/k iterations
R%K

E{g(fmo)} — & S o

e Due to quadratic lower bounding, ||X; — x.||5 decreases by factor O(1/5), and

because for y; = sparse(X,,)
Iy — Il < V2sly — %113 < 2V251 T, — .13,

2.
Gyt
Vi

so that ||yx — x.|| decreases by a constant factor and becomes < Ry, = Ri/2.

e As a result, after k preliminary stages of the algorithm,
gi5% _ 5
Kvx K

E{llye — 2./} < 25E{[lyx — %12} S27°R*+

after k = K preliminary stages.
- 17 -



e During asymptotic stage k, I, > I;. When ||y, _; — x.|| < Ry, the choice

_ Gx [z
‘Bk_Rk\/ 0

results in
E{g(fmk)} — &8x S RiGs \/%/
k
= after
. 52c2 0@
K2R2
iterations

and, by quadratic lower bound,
2 = o 165 < R2 2
|y — x4 ||7 < 85| X, — x4]|2 < T[S(xt) — 8] S Ry/4 = Riyq-

- 18 -



Main result Let || stand for | |- or || - [|-norm.

We define

e Recovery risk: maximal over x, € X expected squared error

Risk;. (%] X) = sup (E{|¥ — x.|*})""*

x.€X

e Prediction risk: maximal over x, € X expected suboptimality

Risk, (x| X) = sup E{g(X)} — g+
x,€X
Theorem 1 Suppose that N > my, so at least one preliminary stage of Algorithm
1 is completed. Then approximate solutions Xy and yn produced by the algorithm
satisfy

2 25,1
Risk,(¥n|X) < %exp {— cNx } + CQ*S%CH)

O 5V kN 7
and
RiSkH.H(yN‘X) < @Risk||.||2(?N‘X)§ \/gRiSkH.”z(fN’X)
cNxk ci5 O
< L A
S Rexp{ @%s‘v}+ p N

- 19 -



Application to sparse linear regression

Consider the problem of recovery of a sparse signal x, € IR"?, n > 3, from indepen-
dent and identically distributed observations

=i xe+0G, i=1,2,..,N,

with ¢; and & mutually independent and such that E{¢i¢/} = %, ks < %, and
=]l < v,V with known xz > 0 and v; we also assume that E{¢;} =0 and E{¢?} < 1.

We are about to apply Stochastic Optimization to the problem

- 1 T.\2
=-E — : SR
min 4 g(x) = ;E{ (1 — ¢" )" } (SR)
=:G(x,w=[¢,1])

Weset || || = |- |1 with || ||« = || - ||, @and we use “/1-proximal setup” of the SMD-SR

algorithm with quadratically growing for n > 2 distance-generating function

1
9(x) = seln(n) nWDEPVP|[x||7, p=1+ —

the corresponding © satisfying ® < e*Inn.

D For matrix Q we denote |Ql|« = max;; |[[Ql;].

- 20 -



Proposition 2 Suppose that
E{”QDCPT(X - x*)Hfo} SJ V(X — x*)TZ(x — Xx)

and that sample size N satisfy

5
N > my < —vxIn[n],
Ky

so at least one preliminary stage of Algorithm 1 is completed.

Then approximate solutions xy and yy produced by the algorithm satisfy

CNKz} o5 jvinn

+
Ky N

Risk ). (7n[X) < Z@Risk-z(fN\X)ﬁReXP{_%gvlnn

Ky R? cNxs N Vo5 Inn
exp ¢ —— .
P »Svinn Ky N

Riskg(fN‘X) S

S

- 21 -



e Remark: apart from positive definiteness of 2, assumptions about regressor
model essentially resume to

E{llpgp’z|3} S vIZ" 2|3 vz € R™ (1)
Bound (%) holds in a variety of situations, e.g., it suffices that
E{(¢"2)"}!"* SE{(9'2)’} Vz e R"

In particular, it holds in the case of

e bounded regressors such that ||¢;||« a.s.
e sub-Gaussian regressors ¢; ~ SG(0,S), i.e., meaning that
E{e"?} < exp {Lu'Su} for all u e R".
(£1) holds when S is “similar” to the covariance matrix £ of ¢, i.e. S < uX.

e scale mixtures ¢ ~ \/217, random variable Z > 0 a.s. with E{Z?} < o and
n € R" with E{yn'} =%, satisfies (¥£;) and is independent of Z.

E.g., ¢ ~ t,(g, %) (n-dimensional Student distribution with g d.f.) with g > 4.

- 22 -



Low rank matrix recovery

e Let E be the space of real p x g matrices equipped with the Frobenius scalar
product

(a,b) = Tr (a'b).
Consider the problem of recovery of a p x g4 matrix x,, from i.i.d. observations
N = <(pi,x*> +(7§Z-, = 1,2,..., N,
with random regressors ¢; € RP*7 having covariance operator
2(x) = E{¢{¢, x)},
¢ € R independent of ¢; with E{¢;} =0 and E{¢?} < 1.

e We put |lallz = (a,a)'/2, |- | is the nuclear norm ||x|| = [[c(x)||1 where o(x) is the
singular spectrum of x, and |ly||. = ||[c(v)||~ (the spectral norm).

e \We suppose that
ks ||z])3 < (z,2(2)) < v|z|l3 Vz € RPX,

with known «xy > 0 and v, and denote |z||y = \/(z, X(2)) = \/E{<gb,z>2}.

e We assume that x, is of rank s <35 < g and that we are given R < c and xy € X
satisfying ||x, — xo|| < R.

- 23 -



Consider the Stochastic Optimization problem

min { g(x) = E{ (1 — (9, )%} = JE{(0C + (p,x. —x)*} = J(lx —x. 3 +0D)}.  (LRR)

xeX N~
=:G(x,w=[¢p,n])

e We are to solve (LRR) utilizing SMD-SR algorithm in the proximal setup asso-
ciated with quadratically growing for g > 2 distance-generating function

2

0(x) = 2eIn(2g) [Zq: a}”(x)] : , = (12 ln[2q])_1.

j=1
with ® < Cln[2g].

e We suppose that regressors ¢; € RP*1 are drawn from a sub-Gaussian ensemble,
¢; ~ SG(0,S), with sub-Gaussian operator S, i.e.,

E{e!¥P)} < o®S(M)/2 vy ¢ RPX

with linear positive definite S(-) which is similar to %(-), i.e., S =< u2 for some u < co.
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Proposition 3 In the just described situation, let the sample size N satisfy

N [zﬂv(zo + q)glnq} ,
Ky,

So that at least one preliminary stage of Algorithm 1 is completed.

Then there is an absolute ¢ > 0 such that approximate solutions Xy and yn
produced by the algorithm satisfy

Risk||_||(37N\X) < Z@Risk||,||z(fNyX) < Rexp { cNxks } N 0_5\/;10(19 +g)In q,

B 1?u(p+q)sing Ky, N
. R Ky R? cNxy, O'Z,MU(P +q)5Ing
< _
Rlskg(xN\X) N 3 exp { 12v(p +q)5Ing } * Ky N .
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Minibatch implementation

One may use minibatches to save on prox-mapping computations when imple-
menting the asymptotic phase of the algorithm. It amounts to replace gradient
observation VG(x,w) with averages

J
VG(x,w!) = } Y VG(x,w)).
=1

If choosing, at the k-th asymptotic stage,

r _ 5
Jk =2°Xx, Bir=pBo = »v, mk:moAE(@m/

the method only performs mgy prox computations per stage.
e For instance, in sparse linear regression problem, when setting
x < lInn,

the error bounds for algorithm with minibatches coincide with those of Proposi-
tions 2 and 3 up to a logarithmic in n factors.
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How it works

e Consider sparse linear regression with i.i.d. random (¢;,¢;). In our experiments,
>, is diagonal with entries 211 < 2 < -.. <3, evenly spaced over [ky,v], parame-
ters (ky,v) being specific for each experiment.

Indices of nonvanishing components of the optimal solution x, are evenly spaced
in [1,n] with the non-zero entries sampled from N (0,1).

e When solving (SR), we compare the performance of the SMD-SR to that of
the “vanilla” non-Euclidean SMD and the Coordinate Descent algorithm (CDA)
of the Python package sklearn solving Lasso problem

: 1 & T2
mm{ﬁ;[m—cpi x] +KHxH1}

xelR”

- _ 21
with x =20 ;\}”.
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Experimental results

L)

[KZ =1.0,0= 0.001J

0000000000000000000000000

0000000000000000000000000 0 10000 20000 30000 40000 50000

Comparison of SMD-SR (solid line) and SMD (dashed line) in the Gaussian
setting; (n,s) = (100000, 50).



(K2=0.1,o=o.1j

Gaussian setting; (n,s) = (50000, 50).




[Kz=1.0,0=0.001J [Kz=l.0,0=0.1J

Student t4 regressors and noise distribution; (n,s) = (100000, 50).



Some extensions
e Enhancing reliability of solutions utilizing Median-of-Means approach.

Suppose that available sample of length N can be split into L independent samples
of length M < N/L.

We may run Algorithm 1 on each subsample thus getting L independent recov-

eries J?(A}),...,a?(]@), then compute an “enhanced solution” as a geometric median of

)

L
INj-e € Argmin Y [|lx — 2)|]2,
X 4=1

and then set yy1_. = sparse(Xn1—¢).
e Reliable solution aggregation.

Assume that two independent observation samples of lengths N and K < N are
available.

Same as above, we may use the first sample to compute L independent approxi-
mate SMD-SR solutions 3?(]@, ¢=1,..,L, M < N/L.

Then we can *“aggregate” ﬁA?,...,a?(AI;I)—select the best of them in terms of the
objective value g(a?%[)) by computing reliable estimations of differences g(a?(]\l/)l) —g(a?(]{/}
using observations of the second sample.
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Consider

e c-risk of recovery

Risk|.| o(¥]X) = inf {r : sup Prob{|x — x| > r} < e}

x,€X

where |- | stands for || - || or || -

e c-prediction risk

Riskg ¢(¥|X) = inf {r : sup Prob{g(x) — g« > r} < e} :

x,€X

Theorem 2 Lete ¢ (O,}l], and let Xy1-¢ (resp., yn1-¢) be a reliable solution by ag-
gregating L < «In[1/€] independent approximate solutions 9?(]\14) 3?(]@) by Algorithm
1. When N > Lmy we have

_ kR? cNx c25,/01In[1/¢€]
. < v . -~ k
Riskgc(¥ni-c[X) 5 = eXp{ 500 In[1 /e]} " «N /
. _ : _ cNK ¢85 [ OIn[1/¢€]
R1skH.H,€(yN,1_€|X) < W ZSRISkH.Hzle(lel_JX) < Rexp {_%s'v@ ln[l/e]} + . \/ N :
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e Penalized algorithm—condition of quadratic minoration of ¢ for the restricted
minoration condition

g(x) - g(x*) Z y(x — Xy, Z(x - x*)>/ Vx € Xr

where 2 > 0 is such that for some x < 1/2, all z € E and all s-sparsifications
zs Of z it holds

lz]l < AV/slz|s + x|z

In this case, a “properly adjusted” implementation of the SMD algorithm for
composite optimization solving a sequence of problems

. n F)
min g(x) + e x| (Px)
attains the bounds analogous to those of Theorem 3.

e Stochastic Variational Inequalities with sparse solutions can be addressed
when utilizing Mirror version of Popov's extragradient algorithm Popov '80.
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