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The structure of the talk
1. Tensor methods

2. Coordinate methods

3. Gradient-free methods

4. Nesterov’s conjugate gradients are primal-dual!

5. Accelerated Alternating minimization

6. Accelerated decentralized optimization for time-varying networks

7. Accelerated stochastic optimization

8. Accelerated methods with relatively Inexact gradient 

9. Universal Mirror-Prox based on Nesterov’s Universal method


Some Photos :)



Our books in Russian
arXiv:2106.01946

Accelerated methods (including 
tensor ones) are one of the main 
subjects of this book! By writing 

this book we significantly based on 
our talks with Yurii.
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Primal-dual methods, Universal 
method and Inexact oracle (in 

sense of Devolder-Glineur-
Nesterov) are one of the main 

subjects of this book! By 
writing this book I significantly 
based on my talks with Yurii.



Our books in Russian
arXiv:2003.12160

Based on:

Gasnikov A., Dorn Y., Nesterov Y., Shpirko S. 
On the three-stage version of stable 
dynamic model // arXiv:1405.7630.


Gasnikov A. V., Gasnikova E. V., Nesterov Y. 
E. Dual methods for finding equilibriums in 
mixed models of flow distribution in large 
transportation networks // Computational 
Mathematics and Mathematical Physics. – 

2018. – V. 58. – №. 9. – P. 1395-1403.



Optimization course for MIPT bachelor students of 3d 
year are significantly based on Nesterov’s acceleration! 

https://opt.mipt.ru 

https://opt.mipt.ru


Universal momentum acceleration

Nesterov’s idea of acceleration is well combined with structural 
optimization, zero-order and high-order methods, primal-dual methods etc. 

Nesterov Y. Smoothing technique and its applications in semidefinite optimization // 
Mathematical Programming. – 2007. – V. 110. – №. 2. – P. 245-259.

Nesterov Y. Efficiency of coordinate descent methods on huge-scale optimization 
problems // SIAM Journal on Optimization. – 2012. – V. 22. – №. 2. – P. 341-362.

Nesterov Y. Gradient methods for minimizing composite functions // Mathematical 
Programming. – 2013. – V. 140. – №. 1. – P. 125-161.

Nesterov Y., Spokoiny V. Random gradient-free minimization of convex functions // 
Foundations of Computational Mathematics. – 2017. – V. 17. – №. 2. – P. 527-566.

Nesterov Y. Implementable tensor methods in unconstrained convex optimization // 
Mathematical Programming. – 2019. – P. 1-27.

Nesterov Y. et al. Primal–dual accelerated gradient methods with small-dimensional 
relaxation oracle // Optimization Methods and Software. – 2020. – P. 1-38.

Polyak B.T. Some methods of speeding up the 
convergence of iteration methods // Comput. 
Math. Math. Phys. - 1964. - V. 4:5. - P. 1–17

Nemirovski A. Orth-method for smooth convex 
optimization // Cybern. Soviet J. Comput. Syst. 
Sci. – 1982. – V. 2. – P. 937-947.

Nesterov Y. E. A method for solving the convex 
programming problem with convergence rate O (1/k^2) // 
Dokl. Akad. nauk USSR. – 1983. – V. 269. – P. 543-547.



Universal momentum acceleration
Recent monographs



Universal momentum acceleration
Recent surveys



1. Tensor method 
Principal Idea of Yu. Nesterov (January, 2018): The following problem is 

convex and have almost the same complexity as Newton iteration when p = 2,3

Nesterov Y. Implementable tensor methods in unconstrained convex optimization // 
Mathematical Programming. – 2019. – P. 1-27.

Gasnikov A. et al. Near Optimal Methods for Minimizing Convex Functions with 
Lipschitz p-th Derivatives // Conference on Learning Theory. – PMLR, 2019. – P. 
1392-1393.

Nesterov, Y. (2020). Inexact high-order proximal-point methods with auxiliary 
search procedure. CORE DP, 10, 2020.

∇rf(z)
Here ∥∇pf(y) − ∇pf(x)∥2 ≤ Mp∥y − x∥2

There exists optimal (up to a log factor) acceleration (Monteiro-Svaiter, 2013; 
Nesterov, 2018 for  (book) and Gasnikov et al., 2019 for )!p = 2 p ≥ 2



1. Tensor method 
Principal Idea of Yu. Nesterov (January, 2018): The following problem is 

convex and have almost the same complexity as Newton iteration when p = 2,3

Nesterov Y. Implementable tensor methods in unconstrained convex optimization // 
Mathematical Programming. – 2019. – P. 1-27.

∇rf(z)
Here ∥∇pf(y) − ∇pf(x)∥2 ≤ Mp∥y − x∥2

To the best of my knowledge, Tensor 
methods is the main direction of current 
research of Yurii. So let’s stop here and 

consider some details and vicinities!



where  - convex.f, g

Problem formulation

12



Main Algorithm

13

Bubeck S. et al. Near-optimal method for highly 
smooth convex optimization // Conference on 
Learning Theory. – PMLR, 2019. – P. 492-507.


Gasnikov A. V. et al. Accelerated Meta-Algorithm 
for Convex Optimization Problems // 
Computational Mathematics and Mathematical 
Physics. – 2021. – V. 61. – №. 1. – P. 17-28.



Main Theorem

Reminder: 

14



Main Drawback

The main theorem  assumes that we have to solve (AP) exactly!

Is it possible to relax this requirement? YES!

Let us use instead of (AP) the following (practical) criteria:

In this case the main theorem holds true with minor correction: 

15



How to solve (AP) when ?g ≡ 0

16

 Nesterov Y. Inexact basic tensor methods. – 2019/23. – CORE Preprint.  p = 2

Nesterov, Y., & Polyak, B. T. (2006). Cubic regularization of Newton method and its global 
performance. Mathematical Programming, 108(1), 177-205.  is implementable!

Nesterov, Y. (2019). Implementable tensor methods in unconstrained convex optimization. 
Mathematical Programming, 1-27.  is implementable!

p = 2

p = 3
If we have  then the complexity to solve (AP) by using 
automatic differentiation and gradient descent in relative smoothness 

assumption one can solve auxiliary problem with the complexity


 a.o.

D2f(x̃k) = ∇2f(x̃k)

Õ (T∇f(x) + d2 + d3)
If we don’t want to calculate  and want to solve (AP) with 

precision  (in function), then the complexity will be .

D2f(x̃k) = ∇2f(x̃k)
δ O (T∇f(x)δ− 1

6 )



How to solve (AP) when ? 

(Super)Hyper-fast Second-order method

g ≡ 0

17

Nesterov, Y. (2020). Superfast second-order methods for unconstrained convex optimization. 
CORE DP, 7, 2020.

Nesterov, Y. (2019). Implementable tensor methods in unconstrained convex optimization. 
Mathematical Programming, 1-27.

For  (AP) has almost the same complexity according to the 

developed method  a.o. and we really need only the 

first and the second order oracle in both cases! So if we have 3-d order 
smoothness, we’d better to choose in AM , but to solve (AP) by 
using second-order information.

p = 2,3
Õ (T∇f(x) + d2 + d3)

p = 3

Nesterov, Y. (2020). Inexact high-order proximal-point methods with auxiliary search 
procedure. CORE DP, 10, 2020.




Applications of AM
Composite optimization:  is prox-friendlyg

18

Nesterov, Y. (2013). Gradient methods for minimizing composite functions. Mathematical 
Programming, 140(1), 125-161. (CORE Preprint, 2007) p = 1 

Beck, A., & Teboulle, M. (2009). A fast iterative shrinkage-thresholding algorithm for linear 
inverse problems. SIAM journal on imaging sciences, 2(1), 183-202. p = 1

Catalyst: , . Accelerated proximal envelop, f ≡ 0 p = 1 H = Lg
1

Lin, H., Mairal, J., & Harchaoui, Z. (2015). A universal catalyst for first-order optimization. In 
Advances in neural information processing systems (pp. 3384-3392).

Accelerated gradient sliding:  isn’t prox-friendly, we apply AM for (AP)g
Lan, G., & Ouyang, Y. (2016). Accelerated gradient sliding for structured convex optimization. 
arXiv preprint arXiv:1609.04905. p = 1

Kamzolov, D., Gasnikov, A., & Dvurechensky, P. (2020). On the optimal combination of tensor 
optimization methods. arXiv preprint arXiv:2002.01004. p = 2, 3 (implementable variants)


Accelerated methods for composite saddle point problem: p = 1

Lin, T., Jin, C., & Jordan, M. (2020). Near-optimal algorithms for minimax optimization. arXiv 
preprint arXiv:2002.02417.

Alkousa, M., Dvinskikh, D., Stonyakin, F., & Gasnikov, A. (2019). Accelerated methods for 
composite non-bilinear saddle point problem. arXiv preprint arXiv:1906.03620.



Accelerated gradient sliding

19

min
x∈ℝd {F(x) := f(x) + g(x)}

But if  is not prox-friendly, what should we do?g

Lan, G. First-order and Stochastic Optimization Methods for Machine Learning. Springer, 2020

Idea: To apply Accelerated Algorithm (AM)  for next problemp = 1

This problem is -strongly convex. So we should apply proper restarted 
version of AM. In this case the complexity splits ( ):  

L
Lf ≤ Lg

O
Lf R2

ε
Õ

LgR2

ε calls∇f  calls∇g



Data Science applications

20

min
x∈ℝd {F(x) := f(x) + g(x)}

Dvinskikh D. M. et al. Accelerated Gradient Sliding for Minimizing a Sum of Functions //
Doklady Mathematics. – Pleiades Publishing, 2020. – V. 101. – №. 3. – P. 244-246.

But this is not an optimal bound. Optimal bound will be (variance reduction)


O m
Lf R2

ε

O m + m
max LkR2

ε

 calls∇fk

 calls∇fk

f(x) :=
1
m

m

∑
k=1

fk(x)

If  is prox-friendly, then Composite AM requiresg

If  is not prox-friendly (Kernel SVM) it’s an open problem. Solution: 
g



Сlick-prediction model

21

min
x∈ℝd {F(x) := f(x) +

μ
2

∥x∥2
2}

Let  be a maximal number of nonzero elements in  and , . 
The total complexity (arithmetic operations) of optimal first-order variance-reduced 

schemes will be (we consider )  


s ak Lk = O (∥ak∥2) k = 1,...,m

μ ≤ ε O sm + s m
max LkR2

ε
a.o.

f(x) :=
1
m

m

∑
k=1

fk(x) fk(x) = log (1 + exp (−yk⟨ak, x⟩))

Is it possible to solve this problem faster? If  is small enough the answer is YES. For 
that we should use 2d order Hyperfast tensor methods! 


ε

Hendrikx H. et al. Statistically preconditioned accelerated gradient method for distributed 
optimization // International Conference on Machine Learning. – PMLR, 2020. – P. 4203-4227.

Dvurechensky P. et al. Hyperfast Second-Order Local Solvers for Efficient Statistically 
Preconditioned Distributed Optimization // arXiv:2102.08246

Idea: For sum type problem Hessian calculation 
can be comparable with Hessian inversion.

We can choose  by applying 
Hendrikx et al., 2020

m



Accelerated method for saddle-points of sum-type

22

min
x

max
y

f(x, y)

Alacaoglu A., Malitsky Y. Stochastic variance reduction for variational inequality methods // arXiv:2102.08352.

Tominin V. et al. On Accelerated Methods for Saddle-Point Problems with Composite Structure // arXiv:2103.09344.

Luo L. et al. Near Optimal Stochastic Algorithms for Finite-Sum Unbalanced Convex-Concave Minimax Optimization 
// arXiv:2106.01761.

Optimal bound (that can be obtained as a proper combination of AM and 
Alacaoglu-Malitsky VR algorithm) looks like (for  this corresponds to 
Lin-Jin-Jordan, 2020 result):


m = 1

Õ ( m ( m + L /μx) ( m + L /μy))  calls∇fk

f(x, y) :=
1
m

m

∑
k=1

fk(x, y)

We assume that all  has -Lipschitz gradient and   is -strongly convex in 
 and  -strongly concave in .

fk L f μx

x μy y



2. Coordinate methods
 - iteration complexity

LR2

ε

Full-gradient method

#  - complexity of each iteration 

(gradient computation cost)

∇f(x)

Random coordinate method

 - iteration complexity ( )n
L̄R2

ε
n = dim x

 #  - complexity of each iteration //  can be improved sometimes!O(n) + ∇i f(x) O(n)

For many interesting cases recalculation of  is -times cheaper than 
calculation of . So it seems that coordinate descent method has the same 

wall-clock time complexity as full-gradient one. But the difference is in  
(average Lipschitz gradient constant along axis) versus  (Lipschitz gradient 

constant at worth direction).  can be -times smaller than !

∇i f(x) n
∇f(x)

L̄
L

L̄ n L
Nesterov Y., Stich S. U. Efficiency of the accelerated coordinate descent method on 
structured optimization problems // SIAM Journal on Optimization. – 2017. – V. 27. – 
№. 1. – P. 110-123.



2. Coordinate methods
So it seems that coordinate descent method has the better wall-clock 

time complexity than full-gradient one

But this is not true in general case!

Matrix  is sparse (NOTE: Nesterov-Stich consider non-sparse case!).A

Recently, there’ve  been developed an approach how to resolve this problem 
with logarithmic additional payment

Lee Y. T., Sidford A. Efficient accelerated coordinate descent methods and faster 
algorithms for solving linear systems // 2013 IEEE 54th Annual Symposium on 
Foundations of Computer Science. – IEEE, 2013. – P. 147-156.

Pasechnyuk D., Matyukhin V. On the Computational Efficiency of Catalyst 
Accelerated Coordinate Descent // International Conference on Mathematical 
Optimization Theory and Operations Research. – Springer, Cham, 2021. – P. 
176-191.



3. Gradient-free methods
Rough idea: accelerated gradient-free method has -times large 
iteration complexity in comparison with full-gradient methods

n

In general this result is optimal!

Recently, there’s  been developed a new type of acceleration that allows to 
change standard Nesterov-Spokoiny iteration complexity

Nesterov Y., Spokoiny V. Random gradient-free minimization of convex functions // 
Foundations of Computational Mathematics. – 2017. – V. 17. – №. 2. – P. 527-566.

n ⋅
L2R2

2

ε
to ,n1/2+1/q ⋅

L2R2
p

ε

1
p

+
1
q

= 1

Dvurechensky P., Gorbunov E., Gasnikov A. An accelerated directional derivative 
method for smooth stochastic convex optimization // European Journal of 
Operational Research. – 2021. – V. 290. – №. 2. – P. 601-621.



4. Nesterov’s conjugate gradients is primal-dual!

Nesterov Y. et al. Primal–dual accelerated gradient methods with small-dimensional 
relaxation oracle // Optimization Methods and Software. – 2020. – P. 1-38.

min
Ax=0

f(x)

min
y

f*(ATy)

Dual problem

Line search is cheap for dual problem!



4. Nesterov’s conjugate gradients are primal-dual!

Goujaud B. et al. Super-Acceleration with Cyclical Step-sizes // arXiv:2106.09687.

Why do we really need line search? 

Answer: Line search allows to exploit spectrum of Hessian at the solution. For example 
[folklore result, known from Yu. Nesterov], if spectrum of quadratic goal function is uniform:

( L2R2
2

ε )
1/2

Note, that recently it was shown that special assumption on spectrum and step size 
policy allows to obtain (1/4)-super-acceleration without line-search.

For accelerated methods without line-search 

( L2R2
2

ε )
1/6

For conjugate gradients // (1/6)-super-acceleration



5. Accelerated Alternating minimization

Guminov S. et al. Accelerated Alternating Minimization, Accelerated Sinkhorn's 
Algorithm and Accelerated Iterative Bregman Projections // ICML, 2021.

Minimization at -blockik



6. Accelerated decentralized optimization 
for time-varying networks

Kovalev D. et al. ADOM: Accelerated decentralized optimization method for time-
varying networks // ICML, 2021.

Kovalev D. et al. Lower Bounds and Optimal Algorithms for Smooth and Strongly 
Convex Decentralized Optimization Over Time-Varying Networks // arXiv:2106.04469.

min
Wx=0

1
m

m

∑
i=1

fi(xi)

Matrix  is a Laplacian matrix of communication network on  nodes.  is 
equivalent to . Assume that this matrix changes from iteration to 

iteration. On iteration  we have matrix Laplacian . What is oracle and 
communication complexity of this problem?

W m Wx = 0
x1 = . . . = xm

k Wk

LR2

ε
max

k
χk ⋅

LR2

ε
Oracle complexity


per node ( )∇fi

Communication

complexity ( )Wkx

χk = λmax(Wk)/λ+
min(Wk)



7. Accelerated stochastic optimization

Nazin A., Nemirovsky A., Tsybakov A., Juditsky A. Algorithms of robust stochastic optimization based on mirror descent method // Autom. 
Remote Control, V. 80:9. - 2019. - P. 1607–1627.

Gorbunov E., Danilova M., Gasnikov A. Stochastic optimization with heavy-tailed noise via accelerated gradient clipping // NeurIPS, 2020.

Woodworth B. et al. The Min-Max Complexity of Distributed Stochastic Convex Optimization with Intermittent Communication // arXiv:2102.01583.

Woodworth B., Srebro N. An Even More Optimal Stochastic Optimization Algorithm: Minibatching and Interpolation Learning // arXiv:2106.02720.

Dvinskikh D. Decentralized Algorithms for Wasserstein Barycenters // PhD Thesis, WIAS, Berlin; arXiv preprint arXiv:2105.01587. – 2021.


From recent works of Woodworth et al. 2021 we know that batch-parallelized accelerated 
gradient method is an optimal approach to solve smooth convex stochastic optimization 

problems in parallel and federated architectures (with and without overparametrization). 
But this conclusion was obtained without high-probability bounds. The problem in such 

bounds is the requirement that  is compact (sometimes it’s impossible to assume that, i.e. 
when solving dual problem by randomized methods Dvinskikh, 2021) and stochastic 

gradients are subgaussian. Based on clipping technique, developed in Nazin et al., 2019, 
Gorbunov et al., 2020 propose how to solve both these problems:     

Q

1) In all estimates we should take  instead of ;

2) Heavy tails bounds can be improved to almost Hoeffding’s concentration.

R = ∥x0 − x*∥2 diam Q

min
x∈Q

Eξ[ f(x, ξ)]



8. Accelerated methods with relatively 
Inexact gradient

In this case accelerated method doesn’t feel inexactness. Note that non 
accelerated methods doesn’t feel inexactness until  (B. Polyak) α → 1

Polyak B. T. Introduction to optimization. optimization software. Inc., Publications Division, New York. – 1987. 

Devolder O., Glineur F., Nesterov Y. First-order methods of smooth convex optimization with inexact oracle // Mathematical Programming. – 
2014. – V. 146. – №. 1. – P. 37-75.

Vasin A., Gasnikov A., Spokoiny V. Stopping rules for accelerated gradient methods with additive noise in gradient // arXiv:2102.02921.

Devolder-Glineur-Nesterov, 2014



9. Universal Mirror-Prox based on 

Nesterov’s Universal method

Nemirovskii A.S., Nesterov Yu.E. Optimal methods of smooth convex minimization // U.S.S.R. Comput. Math. 
Math. Phys., V. 25:2. - 1985. P. 21–30.

Nesterov Y. Universal gradient methods for convex optimization problems // Mathematical Programming. – 
2015. – V. 152. – №. 1. – P. 381-404.

Dvurechensky P. E. et al. Advances in low-memory subgradient optimization // Numerical Nonsmooth 
Optimization. – 2020. – P. 19-59.

Complexity:



Some photos

Special thanks to Svetlana Nesterova!



Marriage, USSR 1982

Yurii and Svetlana almost 40 years together!



IOWA, 1994

Yurii with sons



France, 1989

With main co-author Arkadi Nemirovski (First trip to Europe)



Chicago, 1990

With Arkadi Nemirovski (First trip to USA)



Chicago, 1990

With Arkadi Nemirovski (First trip to USA)



Chicago, 1990

With Arkadi Nemirovski (First trip to USA)



IOWA, 1990

With Arkadi Nemirovski



SWISS, 1996



Luminy, 2007

With Polijaks



2013

With Peter Richtarik, Martin Takac et al.



EURO Gold, 2016



USA, 2017

With A. Nemirovksi and A. Shapiro



Now

At home with ACCOPT group members and family


