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Shapley-Folkman Theorem

Minkowski sum. Given sets X, Y C R¢, we have

X+Y={zr+y: 2z X, yeV}

A

(CGAL User and Reference Manual)

Convex hull. Given subsets V; C R%, we have

Co ZVi — ZCO(V};)
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Shapley-Folkman Theorem

+ 000

The £, /5 ball, Minkowsi average of two and ten balls, convex hull.

Minkowsi sum of five first digits (obtained by sampling).
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Shapley-Folkman Theorem

Basic idea. Let C C R be an arbitrary set.

221 @ S Ma » Co(0)

n n

where n;, e N, Y .n; =n.

Given sets C; C R?, let C = %2?21 C;, this also means

Z?:l Ci _ Z?:l Co(C5)

n n

the Minkowski sum of sets converges to its convex hull.

Alex d'Aspremont

OWB, July 2021. 4/34



Shapley-Folkman Theorem

Shapley-Folkman Theorem [Starr, 1969, Emerson and Greenleaf, 1969]

Suppose V; CR%, i=1,...,n, and

then

for some |S| < d.
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Shapley-Folkman Theorem

Proof sketch. Write z € > | Co(V}), or

n d+1

i=1 j=1 ¢

Conic Carathéodory then yields representation with at most n + d nonzero
coefficients. Use a pigeonhole argument

]

Number of nonzero \;; controls gap with convex hull.
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Shapley-Folkman: geometric consequences

Consequences.

= If the sets V; C RY are uniformly bounded with rad(V;) < R, then

(B0 oo (B5)) s

n

where rad(V') = inf ey sup,cy ||z — yl|.

= Holds for many other nonconvexity measures (e.g. volume deficit) [Fradelizi
et al., 2017].
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Outline

m The Shapley-Folkman Theorem
s Duality Gap Bounds
m Feature Selection

m Numerical Performance
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Nonconvex Optimization

Separable nonconvex problem. Solve

minimize > | fi(z;) (P)

subject to Az < b,

in the variables x; € R% with d = Z?’:l d;, where f; are lower semicontinuous
and A € Rm*4,

Take the dual twice to form a convex relaxation,

minimize 2?21 [ (xs)
subject to Ax <b (P

in the variables z; € R%,
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Nonconvex Optimization

Convex envelope. Biconjugate f** satisfies epi(f**) = Co(epi(f)), which
means that

f**(x) and f(x) match at extreme points of epi(f**).

Define lack of convexity as p(f) = sSup,cgom(s)1f(x) — f**(2)}.

Example.

The [; norm is the convex envelope of Card(x) in [—1,1].

Alex d'Aspremont OWAB, July 2021. 10/34



Nonconvex Optimization

Writing the epigraph of problem (P) as in [Lemaréchal and Renaud, 2001],

gré {(To,r) ER1+mZ Zfz(a:@) ST(), ACBbST,CBERd},

1=1

we can write the dual function of (P) as

TN 2inf {ro+A'r: (ro,r) € G},

in the variable A € R™, where G** = Co(G) is the closed convex hull of the
epigraph G.

If G** = G, no duality gap in (P).
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Nonconvex Optimization

Epigraph & duality gap. Define
Fz' = {(fz(xz)a AZZEz) D XI; € Rdz} -+ RT+1
where A; € R™*%4i is the i'" block of A.

m The epigraph G, can be written as a Minkowski sum of F;

G, =>» Fi+(0,—b) +R7™!
1=1

= Shapley-Folkman shows f**(x;) = f(x;) for all but at most m + 1 terms in
the objective.

s As n — oo, with m/n — 0, G, gets closer to its convex hull G**, and the
duality gap becomes negligible.
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Bound on duality gap

General result. Consider the separable nonconvex problem

hp(u) := min. >0 fi(x,)
i st Yo gi(x) <b+u (P)

in the variables x; € R%, with perturbation parameter u € R™.

Proposition [Ekeland and Temam, 1999]

A priori bounds on the duality gap Suppose the functions f;, g;; in problem (P)
satisfy assumption (...) fori=1,...,n, j=1,...,m. Let

pj = (m+1)maxp(g;;), forj=1,...,m

then
hip(p)* < hp(p) < hp(0)* + (m + 1) max p( ;)

where hp(u)** is the optimal value of the dual to (P).
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Feature Selection

m Reduce number of variables while preserving classification performance.
m Often improves test performance, especially when samples are scarce.

m Helps interpretation.

Classical examples: LASSO, /;-logistic regression, RFE-SVM, . . .
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Introduction: feature selection

RNA classification. Find genes which best discriminate cell type (lung cancer vs
control). 35238 genes, 2695 examples. [Lachmann et al., 2018]
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Number of features (k)

Best ten genes: MT-CO3, MT-ND4, MT-CYB, RP11-217012.1, LYZ,
EEF1Al1, MT-CO1, HBA2, HBB, HBAL.
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Introduction: feature selection

Applications. Mapping brain activity by fMRI.

Encoding and decoding models of cognition

Log-enet

From PARIETAL team at INRIA.
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Introduction: feature selection

fMRI. Many voxels, very few samples leads to false discoveries.

YNSRIV Y SCIENCE 89.18.83 B85:37 PM

Scanning Dead Salmon in fMRI

Machine Highlights Risk of Red
Herrings

t-value

Wired article on Bennett et al. “Neural Correlates of Interspecies Perspective
Taking in the Post-Mortem Atlantic Salmon: An Argument For Proper Multiple
Comparisons Correction” Journal of Serendipitous and Unexpected Results, 2010.
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Multinomial Naive Bayse

Multinomial Naive Bayse. In the multinomial model

log Prob(z | C1) = 2" log 6F + log o
Hj:l x]!

Training by maximum likelihood

(67,07) = argmax fT'logft + f~ ' logh”
1Tot=1T9"=1
0",0€[0,1]™

where f* are sum of positive (resp. negative) feature vectors. Linear
classification rule: for a given test point x € R™, set

T

y(x) = sign(v+w ' x),

where

w = logff —logh, and v = logProb(C,) — log Prob(C_),
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Sparse Naive Bayse

Naive Feature Selection. Make w £ log # — log 6 sparse.

Solve
(0F,07) = argmax ftTlogdt + f~Tlog 6~

subject to  [|[0T — 07 ||o < Kk
1"t =1""=1
6,07 >0

where k > 0 is a target number of features. Features for which ;" = 6. can be
discarded.

(SMNB)

Nonconvex problem.

m Convex relaxation?

m Approximation bounds?
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Sparse Naive Bayse

Convex Relaxation. The dual is very simple.

Sparse Multinomial Naive Bayes [Askari, A., El Ghaoui, 2019]

Let ¢(k) be the optimal value of (SMNB). Then ¢(k) < 1 (k), where 1(k) is the
optimal value of the following one-dimensional convex optimization problem

Y(k) :=C+ min sg(h(a)), (USMNB)

a€el0,1]

where C' is a constant, si(-) is the sum of the top k entries of its vector argument,
and for o € (0,1),

h(a) = frolog fi+ f_olog f-—(fit f-)olog(fi+f-)—fy log a—f_log(1—a).

Solved by bisection, linear complexity O(n + klogk).
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Naive Feature Selection

Duality gap bound. Sparse naive Bayes reads

hp(u) = min,, —f+tTlogqg— f~Tlogr
subject to 1'g=1+u,
].T?“ =1+ U9,

Z:’il Lo#r, <k +us

in the variables ¢,r € [0,1]™, where u € R3. There are three constraints, two of
them convex, which means p = (0,0, 4).

Theorem [Askari et al., 2019]

NFS duality gap bounds. Let ¢(k) be the optimal value of (SMNB) and (k)
that of the convex relaxation (USMNB). We have

(k —4) < (k) < p(k),

for k > 4.

Primalization is tricky, cf. paper. ..
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Sparse Programs

Sparse Programs. Low rank data and sparsity constraints

Peon(k) 2 min f(Xw) + w3, (P-CON)

[wllo<k

in the variable w € R™, where X € R®"*™ is low rank, y € R",v > 0 and k£ > 0.

Penalized formulation
Ppen(A) émgn f(Xw) +%||w||§+>\llwllo (P-PEN)

In the variable w € R™, where A > 0.

Key examples: LASSO, /y-constrained logistic regression.
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Convex Relaxation

The bidual of (P-CON) is written

Peon (k) = m[%nl] f(XD(u)U)—I—%UTD(U)’U 1w <k (BD-CON)
v,ue|0,1|™

Non-convex, but setting v = D(u)v equivalent to

piin(k) = min f(X@)Jr%@D(u)T@ 1w <k (D)
v,uec|0,1|™

in the variables ¥, u € R™, where ' D(u)'? is jointly convex in (7, u).
This is the interval relaxation of the /; sparsity constraint.
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Duality Gap Bounds

Proposition [Askari et al., 2021]

Gap Bounds. Suppose X = U, X,.V." is a compact, rank-r SVD decomposition of
X. From a solution (v*,u*) of (BD-CON) with objective value t*, with probability
one, we can construct a point with at most k + r + 2 nonzero coefficients and
objective value OPT satisfying

Peon(k +7+2) < OPT < p:l (k) < peon(k) (Gap-Bound)

by solving a linear program written

minimize ¢'u

subject to  f(U,2*) 4+ >..", ui%vg‘z =35
D i Ui Sk (1)
S uivs = 2
u € [0, 1™

in the variable u € R™ where ¢ ~ N (0, I,,,), 2* = X, V.! D(u*)v*.
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Duality Gap Bounds

LASSO vs. interval.

Optimality

m Interval: only need low rank

m LASSO: need RIP, incoherence

Support Recovery

m Interval: need low rank + RIP

m LASSO: need RIP, incoherence

Both have similar computational cost.
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m The Shapley-Folkman Theorem
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Naive Feature Selection

Data.
FEATURE VECTORS AMAZON IMDB TwITTER MPQA SST?2
COUNT VECTOR 31,666 103,124 273,779 6,208 16,599
TF-IDF 31,666 103,124 273,779 6,208 16,599
TF-IDF WRD BIGRAM 870,536 8,950,169 12,082,555 27,603 227,012
TF-IDF CHAR BIGRAM 25,019 48,420 17,812 4838 7762

Number of features in text data sets used below.

AmazoNn IMDB Twitter MPQA SST2

COUNT VECTOR 0.043 0.22 1.15 0.0082 0.037
TF-IDF 0.033 0.16 0.89 0.0080  0.027
TF-IDF WRD BIGRAM 0.68 9.38 13.25 0.024 0.21
TF-IDF CHAR BIGRAM 0.076 0.47 4.07 0.0084 0.082

Average run time (seconds, plain Python on CPU).
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Naive Feature Selection.

Method
Logistic-/,
Logistic-RFE
SVM-/,
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Accuracy versus run time on IMDB/Count Vector, MNB in stage two.
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Naive Feature Selection.
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Duality gap bound versus sparsity level for m = 30 (left panel) and m = 3000
(right panel), showing that the duality gap quickly closes as m or k increase.
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LASSO and /y-Logistic Regression

Synthetic example with X € R1990x100 3nd rank 10.
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—= p*(A)+Ar+1)
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Left: Duality gap for linear regression with a £y penalty.

Right: Duality gap for £y constrained logistic regression.
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Naive Feature Selection.
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Run time with IMDB dataset /tf-idf vector data set, with increasing m, k with
fixed ratio k/m, empirically showing (sub-) linear complexity.
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Naive Feature Selection.

Criteo data set. Conversion logs. 45 GB, 45 million rows, 15000 columns.

m Preprocessing (NaN, encoding categorical features) takes 50 minutes.
s Computing f* and f~ takes 20 minutes.

s Computing the full curve below (i.e. solving 15000 problems) takes 2 minutes.

x10°-1.7051x10°

Obijective
%
w

0 2000 4000 6000 8000 10000 12000 14000
Number of features (k)

Standard workstation, plain Python on CPU.
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Conclusion

Shapley Folkman.

m Duality gap bounds for separable problems.
= Require no RIP assumption (only the naive one behind NB).

m Extend to LASSO, ¢y-logistic regression.

For naive Bayes, we get sparsity almost for free.

Papers: ArXiv:1905.09884. AISTATS 2020 and ArXiv:2102.06742.

Python code: https://github.com/aspremon/NaiveFeatureSelection
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