Multivariate B-splines and applications

Tatyana Zaitseva Advisor: Vladimir Yu. Protasov

17.07.2021

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Univariate B-splines

(ロ) ・ 理) ・ ヨ) ・ ヨ) ・ クタの

The classical multivariate B-splines

Tiles

G is a tile if

- (self-similarity) $G = \bigcup_{d_i \text{digits}} M^{-1}(G + d_i)$
- (tiling property) integer shifts of *G* cover the entire space in one layer

Self-similarity: the partition into 3 parts

Tiling

~ ~ ~ ~

æ

Classification of tiles with 2 digits on the plane

Theorem

Up to an affine similarity, there are exactly three different tiles with 2 digits on the plane.

This is a Bear tile

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▼ ◆ ● ◆ ●

It is self-similar

▲日 ▶ ▲圖 ▶ ▲ 画 ▶ ▲ 画 ▶ ● の Q @

Its integer shifts tile the plane

And we use it to construct Bear-splines

◆ロト ◆昼 ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○の久(で)

Main result

Square-3 $\notin C^2$

Square-4 $\notin C^3$

Bear-4 $\in C^3$

Subdivision schemes

$$[Su](k) = \sum_{j \in \mathbb{Z}^d} c_{k-Mj} \cdot u(j), \quad u \in \ell_{\infty}.$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

- the orthogonalization of B-splines
- the construction of wavelet systems
- the estimation of the decay rate of the coefficients of wavelet function

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Bear-2 wavelet

Bear-4 wavelet

