Some generalizations of non-smoothness concepts
for optimization problems and variational inequalities

based on some joint works with F. Stonyakin, M. Alkousa, A. Gasnikov,
O. Savchuk and D. Pasechnyuk
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1 Problem Classes

Definition 1 (Saddle Point Problem)

Consider (py, ity )-strongly convex-concave saddle point problem:
min max f(x,y), 1
ey (1)

@, Qy are nonempty, convex, compact and bounded sets.

Definition 2 (Minty Variational Inequality)

For a given operator g(z) : X — R, where X is a closed convex subset of
some finite-dimensional vector space, we need to find a vector z, € X,

such that
(g(x),xe —x) <0, VzeX. (2)
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e—solutions

Definition 3 (Saddle point problem)

el )] ) S

Definition 4 (Variational inequality)

) - < &
I;leag(g(x) T —zx) +o.
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(4)




1 Motivation

Smallest covering circle problem with non-smooth functional
constraints.

win {0)i= o o= ALl () <0, p =1}, (6)

where A € R" k= 1,..., N are given points and () is a convex compact
set. Functional constraints ¢, for p = 1,...,m, have the following form:

n
wp(T) :=Zapixi—|—/6pi, p=1,..,m. (6)
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1 Motivation

Smallest covering circle problem with non-smooth functional
constraints.

.l;neicrgl {f(gc) = 1r<r}€a<XN llz — Apll; op(z) <0, p=1, ...,m} , (5)

where A € R" k= 1,..., N are given points and () is a convex compact
set. Functional constraints ¢, for p = 1,...,m, have the following form:

n
:Zapixi—kﬂpi, p=1,...,m. (6)
i=1
The corresponding Lagrange saddle point problem:
m 1 m
min max L(z,\) := f(z) + Z Apop(x) — = Z A
TEQ X =(A1,A2,...) Am)T ERT prt 2 prt

This problem is equivalent to the VI with monotone non-smooth operator

Gz, \) = Vf(x) + i::l ApVeop(2),
(—p1(@) + A1, —p2() + A2, oo, —m (@) + Am) T /\M @



1 Mirror Descent Basics

Let E be a finite-dimensional real vector space and E* be its dual. We denote the value
of a linear function g € E* at x € E by g,x. Let || - ||g be some norm on E, || - ||g,« be
its dual, defined by

lglls,« = max {(g,2), ]|z < 1}
We use V f(x) to denote any subgradient of a function f at a point z € domf.
We choose a prox-function d(x), which is continuous, convex on X and
1 admits a continuous gradient Vd(z), where z € X;
2 Let d(zx) be convex on X with respect to || - || g

The corresponding Bregman divergence
Vi(z,z) =d(z) —d(z) — (Vd(2),z — 2), z,z € X
Given a vector z € X, and a vector g € E*, the Mirror Descent step is defined as

Mirr(z, g) := arg Héig {<g, y) + V(y, x)}~
Y

Assume that zcxd(z) = 0 and d(+) is bounded on the unit ball in the chosen norm || - ||,
more precisely

Q
;o Vee X:lz] <1,

d(z) < 3

where €2 is a known constant.
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2 Accelerated Method

Theorem 5
Consider the strongly convex-concave saddle point problem (1). Define the
function g(x) = s f(z,y). Then g(x) admits an inexact

YEQy

(0, L, i )-model with 6 = (DA + dy). Applying k steps of the Fast
Gradient Method to the "outer” and solving the "inner” problem in linear
time, we obtain an e-solution to the problem (1), where § = O(g). The
total number of iterations does not exceed

L L 2L 2 2L D?
O — /22 . log vyl -log ,
K Hy € €

where
~ A=giiez) 2
L L (QA( 2)7(1%_11)) 7L = (Lzy (25:/) + LzzD 2 v >

ez @
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3 Relative Smoothness 10
Definition 6
fy) < f(2) +(Vf(z),y —2) + LV (y,x) (7)

Motivation and many examples

Lu, H., Freund, R. M., Nesterov, Y. (2018). Relatively smooth convex
optimization by first-order methods, and applications. SIAM Journal on
Optimization, 28(1), 333-354.

oz @



3 Relative Lipschitz Continuity

Definition 7
M+/2V(y,z)
[V f(z)]« < S TEE Vz,y€Q, y #x, (8)
Motivation

Lu, H. (2019). “Relative Continuity” for Non-Lipschitz Nonsmooth Convex
Optimization Using Stochastic (or Deterministic) Mirror Descent.
INFORMS Journal on Optimization, 1(4), 288-303.



3 Relative Lipschitz Continuity 112

Support Vector Machine problem

1< A _
f(z) = - ;max {0,1 —yia"w;} + §||x||g — min (9)

The intersection of n ellipsoids problem

0<i<n

1
f(z) := max {ixTAiw + oz + ci} — min (10)
T
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4 (a, L,0d)-relative smoothness 14

Definition 8

fly) < f@) +(Vf(2),y —2) + LV(y,z) + LaV(z,y) +6,  (11)
a((Vf(z),y—x)+ LV (y,z) +96) 20 Vz,y € Q. (12)

» Relative smoothness condition o« = 0

» Relative Lipschitz continuity a = 1
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5 Adaptive Algorithm for Relatively Lipschitz Optimization
Problems 16

Require: ¢ > 0,20, Lo > 0, Rs.t. V (z.,z0) < R,
1 Sethk=k+1, Ly = 2.

2: Find
Tpy1 = arg Irgg{Wf(ﬂEk% z) + L1V (x, zx)}. (13)
3 if .
0 < (Vf (2r) s 2rs1 = 28) + LieaV(@ngn, za) + 5, (14)

then go to the next iteration (item 1).
4: else
set Lpy1 =2 Li+1 and go to item 2.

5: end if

N-1
Ensure: T = =— Zhtl
SN X—:O Lygt1




5 Adaptive Algorithm for Relatively Lipschitz Optimization
Problems 17

Theorem 9

Let f: @Q — R be a convex and M -relatively Lipschitz continuous
function, i.e. (11) and (12) take place with oo = 1,5 < 5. Then after the
stopping of the Algorithm, the following inequality holds

f@) = f(z.) <e.

4M2R2w

Moreover, the total number of iterations will not exceed N = [ 5
€

oz @



5 Adaptation to Inexactness for Relatively Lipschitz Continuous
Minimization Problems 18

Require: ¢ > 0,70, Lo > 0,50 >0, Rst. V (z4,70) < R%.

1: Setk:k+1,Lk+1:%’6k+1:%.

2: Find
1 = argmin{(Vf(w), ) + Lep1V (@, 2x)}- (15)

3: if

0<(Vf(@k),es1 — zk) + Li41V (Tht1, Tk) + Okt1, (16)

then go to the next iteration (item 1).

4: else

set Lyy1 =2 Liy1,0k41 = 2 - Ok+1 and go to item 2.
5. end if

N—1

. 1 T4l

Ensure: v = 5 § Tris
k=0




5 Adaptation to Inexactness for Relatively Lipschitz Continuous
Minimization Problems 19

Theorem 10

Let f: @ — R be a convex and M -relatively Lipschitz continuous
function, i.e. (11) and (12) take place with o = 1. Then after the
stopping of the Algorithm, the following inequality holds

S@) - @) < o+ o Z L (17)

L1’
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6 Universal Method for a-Relatively Smooth Convex Optimization
Problems with Adaptation to Inexactness 21

Require: € > 0,29, Lo > 0, 5o>0 Rst. V(z«,z0) < R

1: Setk—k—l—l Lk+1:— 6k+1:6—k.
2: Find

Th41 = arg meiclgl{(Vf(xk), x) + L1V (z, k) } (18)
3 If

f@rr) < fop) (VS (@r) s Trr1 — 2x) + L1 V(Trr1, Tx) + kg1, (19)

then go to the next iteration (item 1).
4: else
set Lyy1 =2 Liy1,0k41 = 2 - Ok4+1 and go to item 2.

5: end if

= 1 — Tht1
Ensure: 7 = 5 Z .

k+1




6 Universal Method for a-Relatively Smooth Convex Optimization
Problems with Adaptation to Inexactness 22

Theorem 11

Let f : Q — R be a convex and a-relatively smooth function, i.e. (11),
(12) hold. Then after N iterations of the Algorithm, the following
inequality holds

F@) - f) < SN25k+l (20)

L1’

N-1
where Sy = > ﬁ Note that the auxiliary problem (18) in Algorithm
k=0

is solved no more than 3N times.




6 Universal Method for a-Relatively Smooth Convex Optimization
Problems 23

Require: ¢ > 0,20, Lo > 0, Rs.t. V (z.,z0) < R,
1 Setk=k+1, Ly = 2
2: Find
xk+1::argggg{<vdlxk),x>4-Lk+1V%x,xk)}~ (21)

3 If
fxry) < fak) + <Vf (Tk) s Trog1 — $k> + LkHV(xkﬂaxk) + 3{? (22)

then go to the next iteration (item 1).

4: else
set Lyy+1 =2 Liy+1 and go to item 2.

5: end if
6: Stopping criterion

— 1 _4R?

Sy = —_— (23)
Lk+1 £
k=0

N—-1

. 1 Th41

Ensure: z = e E Lot
k=0




6 Universal Method for a-Relatively Smooth Convex Optimization
Problems

Theorem 12

Let f : Q — R be a convex and a-relatively smooth function, i.e. (11) and
(12) hold with § < 3. Then after the stopping of the Algorithm, the
following inequality holds

f@) = f(z.) <e.

If f is M-relatively Lipschitz continuous, i.e. (11) and (12) take place with
«a = 1, the number of iterations of Algorithm does not exceed

2 p2
N [16M2R—‘
€

)
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7 Mirror Descent for Variational Inequalities with Relatively
Bounded Operator 26

Definition 13 (The classical boundedness)

g(x) is bounded on X, if there exists M > 0, such that
lg(@)]|« < M, VzelX.
We can replace the classical concept of the boundedness of an operator by

the so-called Relative boundedness condition as following.

Definition 14 (The Relative boundedness)
g(x) : X — E* is Relatively bounded, if there exists M > 0, such that

<g<$),y - .’13> S M\/ 2V(y,$), vay € X, (24)




7 Mirror Descent for Variational Inequalities with Relatively
Bounded Operator

27

Definition 15 (Special case of the definition)
The Relative boundedness condition can be rewritten in the following way:

M2V (y, x) y 4.

lg(@)ll« <
ly =l

Definition 16 (o-monotonicity)
Let 0 > 0. The operator g(z) : X — E* is o-monotone, if

(25)

(9(y) —g(z),y —z) > —0, Vz,y e X.




7 Adaptive Algorithm for VI's

Require: ¢ > 0,20, Lo > 0, R > 0 s.t. maXV(x zo) < R%

z€EQ
1: Setk—k+1 Lk+1:Tk.
2: Find
Thi1 = arg meig{(g(;tk),m> + L1V (z, 1)} (26)
3. if R
5 T {9(@r), thi1 — 2k) + LipaV(@rrr, 21) > 0, (27)
then go to the next iteration (item 1).
4: else
set Liy1 = 2Lk+1, and go to item 2.
5: end if
6: Stopping criterion
N-1 2R2
Sn = > . 28
N = Z LkJrl £ ( )

Ensure: T =
5 E ToT

ez @



7 Adaptive Algorithm for VI's.

Theorem 17

Let g : Q — R be a relatively bounded and monotone operator, i.e. (24)
and (25) hold. Then after the stopping of the Algorithm, the following
inequality holds

1 1
max(g(m),x—m) < <g($>7.’lﬁk—.’1¢> <e
z€Q SN — Lk+1
, . . 4M?R?
Moreover, the total number of iterations will not exceed N = 5 .
€



7 Adaptation to Inexactness for Relatively Bounded VI's 30

Require: € > 0,20, Lo > 0,80 > 0, R s.t. maxV (z,z0) < R%

1: Setk:k+1,Lk+1:%’6k+1:%.

2: Find
1 = argmin{(g(zx), o) + L1V (2, k) }- (29)

3. if

0 < (g (®x),Tr+1 — k) + Lit1 V(@pt1, T1) + Skt1, (30)

then go to the next iteration (item 1).

4: else

set Lgy1 =2 Lgt+1,0k+1 = 2 - 041 and go to item 2.
5: end if

L N

Ensure: 7 = 5 ];::O T

oz @



7 Adaptation to Inexactness for Relatively Bounded VI's.

Theorem 18

Let g : Q — R be a relatively bounded and monotone operator, i.e. (24)
and (25) hold. Then after N steps of the Algorithm the following
inequality holds

. Ok+1
Iilé“‘é(<g(x)’ TS SN g L1 (1)

Note that the auxiliary problem (29) is solved no more than 3N times.

Remark

The condition of the relative boundedness is essential only for justifying (30). For
Lyy1 > L= ?2 and 0x+1 > §, (30) certainly holds. So, for C' = max{L ; 50
Liy+1 <CL and 0341 < C6 = 025 Vk > 0. Thus, maé((g(m),x —z) < e after

E4S]

N = O(e7?) iterations of the Algorithm.

ez @



Thank you for your attention!
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