
Some generalizations of non-smoothness concepts
for optimization problems and variational inequalities

based on some joint works with F. Stonyakin, M. Alkousa, A. Gasnikov,
O. Savchuk and D. Pasechnyuk

Alexander Titov
a.a.titov@phystech.edu

Higher School of Economics
Moscow Institute of Physics and Technology

July 2021



1 Content | 1

1 Joint Works & Problem Classes

2 Accelerated Method

3 Relative Smoothness and Relative Lipschitz Continuity

4 α-relative smoothness, α ∈ [0; 1]

5 Adaptive Algorithms

6 Universal Algorithms

7 VI’s with Relatively Bounded Operator



1 Joint Works | 2

Titov, A., Stonyakin, F., Alkousa, M., Gasnikov, A. (2021). Algorithms
for solving variational inequalities and saddle point problems with some

generalizations of Lipschitz property for operators, arXiv preprint
arXiv:2103.00961 https://arxiv.org/pdf/2103.00961.pdf

Stonyakin, F., Titov, A., Alkousa, M., Savchuk O., Pasechnyuk D. (2021).
Gradient-Type Adaptive Methods for Relatively Lipschitz Convex

Optimization Problem, arXiv preprint arXiv:2107.05765.
https://arxiv.org/pdf/2107.05765.pdf

https://arxiv.org/pdf/2103.00961.pdf
https://arxiv.org/pdf/2107.05765.pdf


1 Problem Classes | 3

Definition 1 (Saddle Point Problem)
Consider (µx, µy)-strongly convex-concave saddle point problem:

min
x∈Qx

max
y∈Qy

f(x, y), (1)

Qx, Qy are nonempty, convex, compact and bounded sets.

Definition 2 (Minty Variational Inequality)
For a given operator g(x) : X → R, where X is a closed convex subset of
some finite-dimensional vector space, we need to find a vector x∗ ∈ X,
such that

〈g(x), x∗ − x〉 ≤ 0, ∀x ∈ X. (2)
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Definition 3 (Saddle point problem)

max
y

f(x̃, y) − min
x

f(x, ỹ) ≤ ε. (3)

Definition 4 (Variational inequality)

max
x∈Q

〈g(x), x̃ − x〉 ≤ ε + σ. (4)
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Smallest covering circle problem with non-smooth functional
constraints.

min
x∈Q

{
f(x) := max

1≤k≤N
‖x − Ak‖2

2; ϕp(x) ≤ 0, p = 1, ..., m

}
, (5)

where Ak ∈ Rn, k = 1, ..., N are given points and Q is a convex compact
set. Functional constraints ϕp, for p = 1, ..., m, have the following form:

ϕp(x) :=
n∑

i=1
αpixi + βpi, p = 1, ..., m. (6)

The corresponding Lagrange saddle point problem:

min
x∈Q

max−→
λ =(λ1,λ2,...,λm)T ∈Rm

+

L(x, λ) := f(x) +
m∑

p=1

λpϕp(x) − 1
2

m∑
p=1

λ2
p.

This problem is equivalent to the VI with monotone non-smooth operator

G(x, λ) =

 ∇f(x) +
m∑

p=1
λp∇ϕp(x),

(−ϕ1(x) + λ1, −ϕ2(x) + λ2, . . . , −ϕm(x) + λm)T

 ,
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Let E be a finite-dimensional real vector space and E∗ be its dual. We denote the value
of a linear function g ∈ E∗ at x ∈ E by g, x. Let ‖ · ‖E be some norm on E, ‖ · ‖E,∗ be
its dual, defined by

‖g‖E,∗ = max
x

{
〈g, x〉, ‖x‖E 6 1

}
We use ∇f(x) to denote any subgradient of a function f at a point x ∈ domf .
We choose a prox-function d(x), which is continuous, convex on X and

1 admits a continuous gradient ∇d(x), where x ∈ X;
2 Let d(x) be convex on X with respect to ‖ · ‖E

The corresponding Bregman divergence

V (x, z) = d(x) − d(z) − 〈∇d(z), x − z〉, x, z ∈ X

Given a vector x ∈ X, and a vector g ∈ E∗, the Mirror Descent step is defined as

Mirr(x, g) := arg min
y∈Q

{
〈g, y〉 + V (y, x)

}
.

Assume that x∈Xd(x) = 0 and d(·) is bounded on the unit ball in the chosen norm ‖ · ‖,
more precisely

d(x) ≤
Ω
2

, ∀x ∈ X : ‖x‖ ≤ 1,

where Ω is a known constant.
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Theorem 5
Consider the strongly convex-concave saddle point problem (1). Define the
function g(x) = max

y∈Qy

f(x, y). Then g(x) admits an inexact

(δ, L, µx)-model with δ = (D∆ + δ0). Applying k steps of the Fast
Gradient Method to the ”outer” and solving the ”inner” problem in linear
time, we obtain an ε-solution to the problem (1), where δ = O(ε). The
total number of iterations does not exceed

O

(√
L

µx
·

√
Lyy

µy
· log 2LyyR2

ε
· log 2LD2

ε

)
,

where

L = L̃
(

L̃
2ε

(1−ν)(2−ν)
2−ν

) (1−ν)(1+ν)
2−ν

, L̃ =
(

Lxy

(
2Lxy

µy

) ν
2−ν + LxxD

ν−ν2
2−ν

)
.
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Definition 6

f(y) 6 f(x) + 〈∇f(x), y − x〉 + LV (y, x) (7)

Motivation and many examples
Lu, H., Freund, R. M., Nesterov, Y. (2018). Relatively smooth convex
optimization by first-order methods, and applications. SIAM Journal on
Optimization, 28(1), 333-354.
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Definition 7

‖∇f(x)‖∗ ≤
M
√

2V (y, x)
‖y − x‖

∀x, y ∈ Q, y 6= x, (8)

Motivation
Lu, H. (2019). “Relative Continuity” for Non-Lipschitz Nonsmooth Convex
Optimization Using Stochastic (or Deterministic) Mirror Descent.
INFORMS Journal on Optimization, 1(4), 288-303.
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Support Vector Machine problem

f(x) := 1
n

n∑
i=1

max
{

0, 1 − yix
T wi

}
+ λ

2 ‖x‖2
2 → min

x
(9)

The intersection of n ellipsoids problem

f(x) := max
0≤i≤n

{
1
2xT Aix + bT

i x + ci

}
→ min

x
(10)
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Definition 8

f(y) 6 f(x) + 〈∇f(x), y − x〉 + LV (y, x) + LαV (x, y) + δ, (11)

α (〈∇f(x), y − x〉 + LV (y, x) + δ) > 0 ∀x, y ∈ Q. (12)

I Relative smoothness condition α = 0
I Relative Lipschitz continuity α = 1
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5 Adaptive Algorithm for Relatively Lipschitz Optimization
Problems | 16

Require: ε > 0, x0, L0 > 0, R s.t. V (x∗, x0) 6 R2.
1: Set k = k + 1, Lk+1 = Lk

2 .
2: Find

xk+1 = arg min
x∈Q

{〈∇f(xk), x〉 + Lk+1V (x, xk)}. (13)

3: if
0 6 〈∇f (xk) , xk+1 − xk〉 + Lk+1V (xk+1, xk) + ε

2 , (14)

then go to the next iteration (item 1).
4: else

set Lk+1 = 2 · Lk+1 and go to item 2.

5: end if
Ensure: x̂ = 1

SN

N−1∑
k=0

xk+1
Lk+1

.



5 Adaptive Algorithm for Relatively Lipschitz Optimization
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Theorem 9
Let f : Q → R be a convex and M -relatively Lipschitz continuous
function, i.e. (11) and (12) take place with α = 1, δ ≤ ε

2 . Then after the
stopping of the Algorithm, the following inequality holds

f(x̂) − f(x∗) 6 ε.

Moreover, the total number of iterations will not exceed N =
⌈

4M2R2

ε2

⌉
.
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Require: ε > 0, x0, L0 > 0, δ0 > 0, R s.t. V (x∗, x0) 6 R2.
1: Set k = k + 1, Lk+1 = Lk

2 , δk+1 = δk
2 .

2: Find
xk+1 = arg min

x∈Q
{〈∇f(xk), x〉 + Lk+1V (x, xk)}. (15)

3: if
0 6 〈∇f (xk) , xk+1 − xk〉 + Lk+1V (xk+1, xk) + δk+1, (16)

then go to the next iteration (item 1).
4: else

set Lk+1 = 2 · Lk+1, δk+1 = 2 · δk+1 and go to item 2.

5: end if
Ensure: x̂ = 1

SN

N−1∑
k=0

xk+1
Lk+1

.
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Theorem 10
Let f : Q → R be a convex and M -relatively Lipschitz continuous
function, i.e. (11) and (12) take place with α = 1. Then after the
stopping of the Algorithm, the following inequality holds

f(x̂) − f(x∗) 6 R2

SN
+ 1

SN

N−1∑
k=0

δk+1

Lk+1
. (17)
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6 Universal Method for α-Relatively Smooth Convex Optimization
Problems with Adaptation to Inexactness | 21

Require: ε > 0, x0, L0 > 0, δ0 > 0, R s.t. V (x∗, x0) 6 R2.
1: Set k = k + 1, Lk+1 = Lk

2 , δk+1 = δk
2 .

2: Find
xk+1 = arg min

x∈Q
{〈∇f(xk), x〉 + Lk+1V (x, xk)}. (18)

3: If

f (xk+1) 6 f (xk) + 〈∇f (xk) , xk+1 − xk〉 + Lk+1V (xk+1, xk) + δk+1, (19)

then go to the next iteration (item 1).
4: else

set Lk+1 = 2 · Lk+1, δk+1 = 2 · δk+1 and go to item 2.

5: end if
Ensure: x̂ = 1

SN

N−1∑
k=0

xk+1
Lk+1

.



6 Universal Method for α-Relatively Smooth Convex Optimization
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Theorem 11
Let f : Q → R be a convex and α-relatively smooth function, i.e. (11),
(12) hold. Then after N iterations of the Algorithm, the following
inequality holds

f(x̂) − f(x∗) 6 R2

SN
+ 1

SN

N−1∑
k=0

δk+1

Lk+1
, (20)

where SN =
N−1∑
k=0

1
Lk+1

. Note that the auxiliary problem (18) in Algorithm

is solved no more than 3N times.



6 Universal Method for α-Relatively Smooth Convex Optimization
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Require: ε > 0, x0, L0 > 0, R s.t. V (x∗, x0) 6 R2.
1: Set k = k + 1, Lk+1 = Lk

2 .
2: Find

xk+1 = arg min
x∈Q

{〈∇f(xk), x〉 + Lk+1V (x, xk)}. (21)

3: If

f (xk+1) 6 f (xk) + 〈∇f (xk) , xk+1 − xk〉 + Lk+1V (xk+1, xk) + 3ε

4 , (22)

then go to the next iteration (item 1).
4: else

set Lk+1 = 2 · Lk+1 and go to item 2.
5: end if
6: Stopping criterion

SN =
N−1∑
k=0

1
Lk+1

>
4R2

ε
. (23)

Ensure: x̂ = 1
SN

N−1∑
k=0

xk+1
Lk+1

.
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Theorem 12
Let f : Q → R be a convex and α-relatively smooth function, i.e. (11) and
(12) hold with δ ≤ 3ε

4 . Then after the stopping of the Algorithm, the
following inequality holds

f(x̂) − f(x∗) 6 ε.

If f is M -relatively Lipschitz continuous, i.e. (11) and (12) take place with
α = 1, the number of iterations of Algorithm does not exceed

N =
⌈

16M2R2

ε2

⌉
.
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7 Mirror Descent for Variational Inequalities with Relatively
Bounded Operator | 26

Definition 13 (The classical boundedness)
g(x) is bounded on X, if there exists M > 0, such that

‖g(x)‖∗ ≤ M, ∀x ∈ X.

We can replace the classical concept of the boundedness of an operator by
the so-called Relative boundedness condition as following.

Definition 14 (The Relative boundedness)
g(x) : X → E∗ is Relatively bounded, if there exists M > 0, such that

〈g(x), y − x〉 ≤ M
√

2V (y, x), ∀x, y ∈ X, (24)



7 Mirror Descent for Variational Inequalities with Relatively
Bounded Operator | 27

Definition 15 (Special case of the definition)
The Relative boundedness condition can be rewritten in the following way:

‖g(x)‖∗ ≤
M
√

2V (y, x)
‖y − x‖

, y 6= x.

Definition 16 (σ-monotonicity)
Let σ > 0. The operator g(x) : X → E∗ is σ-monotone, if

〈g(y) − g(x), y − x〉 ≥ −σ, ∀x, y ∈ X. (25)
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Require: ε > 0, x0, L0 > 0, R > 0 s.t. max
x∈Q

V (x, x0) 6 R2.

1: Set k = k + 1, Lk+1 = Lk
2 .

2: Find
xk+1 = arg min

x∈Q
{〈g(xk), x〉 + Lk+1V (x, xk)}. (26)

3: if
ε

2 + 〈g(xk), xk+1 − xk〉 + Lk+1V (xk+1, xk) > 0, (27)

then go to the next iteration (item 1).
4: else

set Lk+1 = 2Lk+1, and go to item 2.

5: end if
6: Stopping criterion

SN =
N−1∑
k=0

1
Lk+1

>
2R2

ε
. (28)

Ensure: x̂ = 1
SN

N−1∑
k=0

xk
Lk+1

.
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Theorem 17
Let g : Q → R be a relatively bounded and monotone operator, i.e. (24)
and (25) hold. Then after the stopping of the Algorithm, the following
inequality holds

max
x∈Q

〈g(x), x̂ − x〉 6 1
SN

N−1∑
k=0

1
Lk+1

〈g(x), xk − x〉 6 ε.

Moreover, the total number of iterations will not exceed N =
⌈

4M2R2

ε2

⌉
.
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Require: ε > 0, x0, L0 > 0, δ0 > 0, R s.t. max V (x, x0) 6 R2.
1: Set k = k + 1, Lk+1 = Lk

2 , δk+1 = δk
2 .

2: Find
xk+1 = arg min

x∈Q
{〈g(xk), x〉 + Lk+1V (x, xk)}. (29)

3: if
0 6 〈g (xk) , xk+1 − xk〉 + Lk+1V (xk+1, xk) + δk+1, (30)

then go to the next iteration (item 1).
4: else

set Lk+1 = 2 · Lk+1, δk+1 = 2 · δk+1 and go to item 2.

5: end if
Ensure: x̂ = 1

SN

N−1∑
k=0

xk
Lk+1

.
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Theorem 18
Let g : Q → R be a relatively bounded and monotone operator, i.e. (24)
and (25) hold. Then after N steps of the Algorithm the following
inequality holds

max
x∈Q

〈g(x), x̂ − x〉 6 R2

SN
+ 1

SN

N−1∑
k=0

δk+1

Lk+1
. (31)

Note that the auxiliary problem (29) is solved no more than 3N times.

Remark
The condition of the relative boundedness is essential only for justifying (30). For
Lk+1 ≥ L = M2

ε
and δk+1 ≥ ε

2 , (30) certainly holds. So, for C = max{ 2L
L0

; 2δ
δ0

},
Lk+1 ≤ CL and δk+1 ≤ Cδ = Cε

2 ∀k ≥ 0. Thus, max
x∈Q

〈g(x), x̂ − x〉 ≤ ε after

N = O(ε−2) iterations of the Algorithm.



Thank you for your attention!
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